用biglm因子预测

时间:2015-12-05 22:02:33

标签: r bigdata prediction

为什么biglm的预测与lm的预测不同?

以下是我生成数据的代码:(不可否认的是马虎)

require(data.table)
require(biganalytics)

#create a data set with factor variables and one continuous numerical variable 
LETTERS702 <- c(LETTERS, sapply(LETTERS, function(x) paste0(x, LETTERS)))
data = data.table(ded = runif(100), cont = runif(100), fac1 = as.factor(LETTERS702[1:10]))
data[, cont := as.factor(ifelse(cont < .25, 100, 
                  ifelse(cont < .5, 200, 
                         ifelse( cont < .75, 300,
                                 cont))))]
newdata = data.table(ded = runif(50), cont = runif(50), fac1 = as.factor(LETTERS702[7:12]))
newdata[, cont := as.factor(ifelse(cont < .25, 100, 
                     ifelse(cont < .5, 200, 
                            ifelse( cont < .75, 300,
                                    cont))))]

#add the levels from the old data to the new data
levels(newdata$fac1) = c(levels(newdata$fac1),levels(data$fac1))
levels(newdata$cont) = c(levels(newdata$cont),levels(data$cont))

levels(data$fac1) = c(levels(data$fac1),levels(newdata$fac1))
levels(data$cont) = c(levels(data$cont),levels(newdata$cont))

现在,当我运行lm回归并尝试在新数据表中创建预测值时,它按预期工作:

reg =lm(ded ~ fac1 + cont, data = data)
summary(reg)

newdata[fac1 %in% data$fac1 & cont %in% data$cont, ded_hat := predict(reg, newdata[fac1 %in% data$fac1 & cont %in% data$cont, ])]

head(newdata)
         ded cont fac1   ded_hat
1: 0.1820960  200    G 0.4636306
2: 0.2561465  300    H 0.5412485
3: 0.8711127  300    I 0.5351451
4: 0.9839877  200    J 0.5737994
5: 0.8802973  200    K        NA
6: 0.1385486  200    L        NA

但是当我尝试使用biglm时,所有新的预测值都是NA:

reg = biglm(ded ~ fac1 + cont, data = data)
summary(reg)

newdata[fac1 %in% data$fac1 & cont %in% data$cont, ded_hat := predict(reg, newdata[fac1 %in% data$fac1 & cont %in% data$cont, ])]

head(newdata)
         ded cont fac1 ded_hat
1: 0.1820960  200    G      NA
2: 0.2561465  300    H      NA
3: 0.8711127  300    I      NA
4: 0.9839877  200    J      NA
5: 0.8802973  200    K      NA
6: 0.1385486  200    L      NA

这里发生了什么?我需要更改什么来预测为biglm工作?

2 个答案:

答案 0 :(得分:1)

看起来biglm不会自动删除未使用的级别,也不会以复杂的方式调整不同的因子级别。

如果你这样做

reg1 = lm(ded ~ fac1 + cont, data = data)
reg2 = biglm(ded ~ fac1 + cont, data = data)

并比较系数,您会看到非NA值匹配,但有14个额外的NA值......这些值可能是通过预测计算传播的。

length(coef(reg1))
## [1] 36
length(coef(reg2))
## [1] 50
## unname()  and c() remove extraneous attributes 
all.equal(unname(coef(reg1)),unname(c(na.omit(coef(reg2))))) ## TRUE

如果您使用droplevels

reg3 = biglm(ded ~ fac1 + cont, data = droplevels(data))

然后系数匹配,但预测失败的方式不同(Error in x %*% coef(object) : non-conformable arguments),可能是因为新数据中有一组不同的级别 - 你必须更加努力地设置因子水平所以他们匹配...

答案 1 :(得分:1)

以下是我最终使用的工作:

  1. 确保新数据具有旧数据的所有级别
  2. 使用dummies包手动扩展为每个级别的假人
  3. 运行回归并进行预测

    require(data.table)
    require(dummies)
    
    #create a data set with factor variables and one continuous numerical variable 
    LETTERS702 <- c(LETTERS, sapply(LETTERS, function(x) paste0(x, LETTERS)))
    data = data.table(ded = runif(100), cont = runif(100), fac1 = as.factor(LETTERS702[1:10]))
    data[, cont := as.factor(ifelse(cont < .25, 100, 
                  ifelse(cont < .5, 200, 
                         ifelse( cont < .75, 300,
                                 cont))))]
    
    newdata = data.table(ded = runif(50), cont = runif(50), fac1 = as.factor(LETTERS702[7:12]))
    newdata[, cont := as.factor(ifelse(cont < .25, 100, 
                     ifelse(cont < .5, 200, 
                            ifelse( cont < .75, 300,
                                    cont))))]
    
    #add the levels from the old data to the new data
    levels(newdata$fac1) = c(levels(newdata$fac1),levels(data$fac1))
    levels(newdata$cont) = c(levels(newdata$cont),levels(data$cont))
    
    #generate a dummy for each fac1
    data = as.data.table(dummy.data.frame(data, names = c("fac1","cont")))
    newdata = as.data.table(dummy.data.frame(newdata, names = c("fac1","cont"), drop = F))
    
    #a list of variable names in both data sets
    datanames = (names(data))
    newdatanames = (names(newdata))
    varnames = subset(newdatanames, newdatanames %in% datanames)
    
    #regression
    reg = lm(ded ~ ., data = data)
    
    #prediction
    newdata[, ded_hat := predict(reg, newdata)]