所以问题是:
写一个程序来找到第n个超级难看的数字。
超级丑陋的数字是正数,其所有素数因子都在大小为k的给定素数列表素数中。例如,[1,2,4,7,8,13,14,16,19,26,28,32]是给出素数= [2,7,13,19]的前12个超丑数的序列大小为4。
因此,我的算法基本上使用它们遵循的模式找到所有可能的因素,将它们推送到数组,对该数组进行排序,然后返回数组中的第n个值。它准确地计算了所有这些,但是,当nth值很高时,它太慢了。
我的问题是,正确的做法是,我确信必须有一个更直接的解决方案。我对寻找它的理论以及是否存在某种封闭的公式感到非常好奇。
var nthSuperUglyNumber = function(n, primes) {
xprimes = primes;
var uglies = [1];
uglies = getUglyNumbers(n, primes, uglies);
// return uglies[n-1];
return uglies[n - 1];
};
// 3 4
//1, 2,3,5, || 4,6,10, 9,15, 25, || 8,12,20,18,30,50, 27,45,75, 125 ||
// 3,2,1 6,3,1, 10,4,1
// 1 1 1
//1, 2,3 || 4,6, 9, || 8,12,18, 27 || 16,24,36,54, 81
// 2,1 3,1 4,1 5,1
//
//1, 2,3,5,7 || 4,6,10,14 9,15,21 25,35, 49 ||
// 4,3,2,1 || 10,6,3,1
var getUglyNumbers = function(n, primes, uglies) {
if (n == 1) {
return uglies;
}
var incrFactor = [];
var j = 0;
// Initial factor and uglies setup
for (; j < primes.length; j += 1) {
incrFactor[j] = primes.length - j;
uglies.push(primes[j]);
}
//recrusive algo
uglies = calcUglies(n, uglies, incrFactor);
uglies.sort(function(a, b) {
return a - b;
});
return uglies;
};
var calcUglies = function(n, uglies, incrFactor) {
if (uglies.length >= 5 * n) return uglies;
var currlength = uglies.length;
var j = 0;
for (j = 0; j < xprimes.length; j += 1) {
var i = 0;
var start = currlength - incrFactor[j];
for (i = start; i < currlength; i += 1) {
uglies.push(xprimes[j] * uglies[i]);
}
}
// Upgrades the factors to level 2
for (j = 1; j < xprimes.length; j += 1) {
incrFactor[xprimes.length - 1 - j] = incrFactor[xprimes.length - j] + incrFactor[xprimes.length - 1 - j];
}
return calcUglies(n, uglies, incrFactor);
};
答案 0 :(得分:1)
public static ArrayList<Integer> superUgly(int[] primes,int size)
{
Arrays.sort(primes);
int pLen = primes.length;
ArrayList<Integer> ans = new ArrayList<>();
ans.add(1);
PriorityQueue<pair> priorityQueue = new PriorityQueue<>(Comparator.comparingInt(p -> p.value));
HashSet<Integer> hashSet = new HashSet<>();
int next_ugly_number;
int[] indices = new int[pLen];
for(int i=0;i<pLen;i++) {
hashSet.add(primes[i]);
priorityQueue.add(new pair(i,primes[i]));
}
while(ans.size()!=size+1)
{
pair pair = priorityQueue.poll();
next_ugly_number = pair.value;
ans.add(next_ugly_number);
indices[pair.index]+=1;
int temp = ans.get(indices[pair.index])*primes[pair.index];
if (!hashSet.contains(temp))
{
priorityQueue.add(new pair(pair.index,temp));
hashSet.add(temp);
}
else {
while(hashSet.contains(temp))
{
indices[pair.index]+=1;
temp = ans.get(indices[pair.index])*primes[pair.index];
}
priorityQueue.add(new pair(pair.index,temp));
hashSet.add(temp);
}
}
ans.remove(0);
return ans;
}
配对课程是
class pair
{
int index,value;
public pair(int i,int v)
{
index = i;
value = v;
}
}
它返回一个大小'size'的丑陋数字列表。
我正在使用优先级队列来查找每个循环的最小值,并使用散列集来避免priorityQueue中的重复条目
因此,其时间复杂度为O(n log(k))
,其中n
为大小,k
为素数数组。
答案 1 :(得分:0)
此算法对大型n
执行效果更佳。
primes := {2, 7, 13, 19}
set list := {1}
for i in 1..n-1:
set k = list[0]
for p in primes:
insert p*k into list unless p*k is in list
remove list[0] from list
return list[0]
如果顺序插入很难,您只需将元素插入到列表末尾,然后在删除列表[0]后对列表进行排序。
答案 2 :(得分:0)
import java.util.*;
import java.lang.*;
import java.io.*;
public class Solution{
public static void main(String[] args) {
Scanner fi = new Scanner(System.in);
int n=fi.nextInt();
int i;
int primes[] ={2,3,5};
HashSet<Integer> hm=new HashSet<>();
PriorityQueue<Integer> pq=new PriorityQueue<>();
TreeSet<Integer> tr=new TreeSet<>();
tr.add(1);
pq.add(1);
hm.add(1);
for (i=0;i<primes.length;i++){
tr.add(primes[i]);
pq.add(primes[i]);
hm.add(primes[i]);
}
int size=tr.size();
while (size < n){
int curr=pq.poll();
for (i=0;i<primes.length;i++){
if (!hm.contains(curr*primes[i])) {
tr.add(curr * primes[i]);
hm.add(curr*primes[i]);
pq.add(curr*primes[i]);
size++;
}
}
}
System.out.println(tr);
}
}
这可能像TreeSet一样帮助按顺序维护元素,因此需要担心索引。
答案 3 :(得分:0)
这是我可以在Python中使用动态编程编写的最佳解决方案。
时间复杂度:O(n * k)
空间复杂度:O(n)
from typing import List
def super_ugly_numbers(n: int, primes: List[int]) -> int:
# get nth super ugly number
ugly_nums = [0] * n
ugly_nums[0] = 1
length = len(primes)
mul_indices = [0] * length
multipliers = primes[:]
for index in range(1, n):
ugly_nums[index] = min(multipliers)
for in_index in range(length):
if ugly_nums[index] == multipliers[in_index]:
mul_indices[in_index] += 1
multipliers[in_index] = ugly_nums[mul_indices[in_index]] * primes[in_index]
return ugly_nums[n-1]