使用dplyr
我正在为两个类别生成一个简单的摘要表:
# Data
data("mtcars")
# Lib
require(dplyr)
# Summary
mt_sum <- mtcars %>%
group_by(am, gear) %>%
summarise(n = n()) %>%
spread(key = am, value = n)
产生了预期的结果:
Source: local data frame [3 x 3]
gear 0 1
(dbl) (int) (int)
1 3 15 NA
2 4 4 8
3 5 NA 5
对于生成的表,我想添加一组列,这些列将具有行百分比而不是当前可用的总计。
我希望我的桌子看起来像那样:
gear 0 1 0per 1per
1 3 15 NA 100%
2 4 4 8 33% 67%
3 5 NA 5 100%
我尝试通过添加代码来实现以下功能:
mt_sum <- mtcars %>%
group_by(am, gear) %>%
summarise(n = n()) %>%
spread(key = am, value = n) %>%
mutate_each(funs(./rowSums(.)))
但它返回以下错误:
Error: 'x' must be an array of at least two dimensions
因此我的问题是:如何在dplyr
中添加行百分比值的额外列?
NAs
CrossTable
中的gmodels
轻松构建表格,但我希望留在dplyr
,因为我希望在一个地方尽可能多地进行转换答案 0 :(得分:4)
我认为这就是你所需要的:
# Data
data("mtcars")
# Lib
require(dplyr)
require(tidyr)
require(scales) #for percent
# Summary
mtcars %>%
group_by(am, gear) %>%
summarise(n = n()) %>%
spread(key = am, value = n) %>%
#you need rowwise because this is a rowwise operation
rowwise %>%
#I find do to be the best function for ad-hoc things that
#have no specific dplyr function
#I use do below to calculate the numeric percentages
do(data.frame(.,
per0 = .$`0` / sum(.$`0`, .$`1`, na.rm=TRUE),
per1 = .$`1` / sum(.$`0`, .$`1`, na.rm=TRUE))) %>%
#mutate here is used to convert NAs to blank and numbers to percentages
mutate(per0 = ifelse(is.na(per0), '', percent(per0)),
per1 = ifelse(is.na(per1), '', percent(per1)))
输出:
Source: local data frame [3 x 5]
Groups: <by row>
gear X0 X1 per0 per1
(dbl) (int) (int) (chr) (chr)
1 3 15 NA 100%
2 4 4 8 33.3% 66.7%
3 5 NA 5 100%
答案 1 :(得分:4)
以下是重塑形式的方法:
库(dplyr) 库(tidyr)
mtcars %>%
count(gear, am) %>%
mutate(percent = n / sum(n)) %>%
gather(variable, value,
n, percent) %>%
unite("new_variable", am, variable) %>%
spread(new_variable, value)
答案 2 :(得分:3)
因此,这可以解决问题,但不会在单个表达式中完成所有操作,也不会重命名变量。 @LyzandeR的解决方案更好。
library(tidyr)
library(dplyr)
mt_sum <- mtcars %>%
group_by(am, gear) %>%
summarise(n = n()) %>%
spread(key = am, value = n, fill=0)
row_sum <- rowSums(mt_sum[,2:3])
mt_sum <- mutate_each(mt_sum[,2:3],funs(./row_sum)) %>% bind_cols(mt_sum)