在dplyr中按组获取总和后计算具有行百分比的列

时间:2015-12-03 15:17:34

标签: r aggregate dplyr frequency crosstab

使用dplyr我正在为两个类别生成一个简单的摘要表:

# Data
data("mtcars")
# Lib
require(dplyr)
# Summary
mt_sum <- mtcars %>%
  group_by(am, gear) %>%
  summarise(n = n()) %>%
  spread(key = am, value = n)

产生了预期的结果:

Source: local data frame [3 x 3]

   gear     0     1
  (dbl) (int) (int)
1     3    15    NA
2     4     4     8
3     5    NA     5

对于生成的表,我想添加一组列,这些列将具有行百分比而不是当前可用的总计。

期望的结果

我希望我的桌子看起来像那样:

   gear     0     1   0per   1per
1     3    15    NA   100%   
2     4     4     8   33%    67%    
3     5    NA     5          100%

尝试

我尝试通过添加代码来实现以下功能:

mt_sum <- mtcars %>%
  group_by(am, gear) %>%
  summarise(n = n()) %>%
  spread(key = am, value = n) %>%
  mutate_each(funs(./rowSums(.)))

但它返回以下错误:

  

Error: 'x' must be an array of at least two dimensions

因此我的问题是:如何在dplyr中添加行百分比值的额外列?

侧点

  • 我更喜欢空白值,而不是NAs
  • 可以使用CrossTable中的gmodels轻松构建表格,但我希望留在dplyr,因为我希望在一个地方尽可能多地进行转换

3 个答案:

答案 0 :(得分:4)

我认为这就是你所需要的:

# Data
data("mtcars")
# Lib
require(dplyr)
require(tidyr)
require(scales) #for percent
# Summary
mtcars %>%
  group_by(am, gear) %>%
  summarise(n = n()) %>%
  spread(key = am, value = n) %>%
  #you need rowwise because this is a rowwise operation
  rowwise %>%
  #I find do to be the best function for ad-hoc things that 
  #have no specific dplyr function
  #I use do below to calculate the numeric percentages
  do(data.frame(.,
                per0 = .$`0` / sum(.$`0`, .$`1`, na.rm=TRUE),
                per1 = .$`1` / sum(.$`0`, .$`1`, na.rm=TRUE))) %>%
  #mutate here is used to convert NAs to blank and numbers to percentages
  mutate(per0 = ifelse(is.na(per0), '', percent(per0)),
         per1 = ifelse(is.na(per1), '', percent(per1)))

输出:

Source: local data frame [3 x 5]
Groups: <by row>

   gear    X0    X1  per0  per1
  (dbl) (int) (int) (chr) (chr)
1     3    15    NA  100%      
2     4     4     8 33.3% 66.7%
3     5    NA     5        100%

答案 1 :(得分:4)

以下是重塑形式的方法:

库(dplyr) 库(tidyr)

mtcars %>%
  count(gear, am) %>%
  mutate(percent = n / sum(n)) %>%
  gather(variable, value, 
         n, percent) %>%
  unite("new_variable", am, variable) %>%
  spread(new_variable, value)

答案 2 :(得分:3)

因此,这可以解决问题,但不会在单个表达式中完成所有操作,也不会重命名变量。 @LyzandeR的解决方案更好。

library(tidyr)
library(dplyr)
mt_sum <- mtcars %>%
  group_by(am, gear) %>%
  summarise(n = n()) %>%
  spread(key = am, value = n, fill=0) 
row_sum <- rowSums(mt_sum[,2:3])
mt_sum <- mutate_each(mt_sum[,2:3],funs(./row_sum)) %>% bind_cols(mt_sum)