我想计算特定数据集的所有列(或选定列)的线性回归。第一列表示回归的X轴,另一列表示每个主题的响应。第二步是为每个特定主题提取回归的系数参数(线性或逻辑)。 实际上,我使用lm(或glm)手动为每列操作并将系数提取到特定变量和数据集。
使用lm的示例:
dataset <- as.data.frame(matrix(c(1,1,
3,7,2,1,4,5,3,2,4,6,4,2,5,8,5,5,9,9,6,4,
12,10,7,6,15,11,8,6,15,15,9,8,16,10,10,9,18,9,11,12,
20,12,12,15,21,16,13,18,22,15,14,22,21,10,15,29,24,12)
,nrow=15, ncol=4,byrow=TRUE))
colnames(dataset) <- c("X","Sj1","Sj2","Sj3")
输出:
dataset
X Sj1 Sj2 Sj3
1 1 1 3 7
2 2 1 4 5
3 3 2 4 6
4 4 2 5 8
5 5 5 9 9
6 6 4 12 10
7 7 6 15 11
8 8 6 15 15
9 9 8 16 10
10 10 9 18 9
11 11 12 20 12
12 12 15 21 16
13 13 18 22 15
14 14 22 21 10
15 15 29 24 12
回归:
attach (dataset)
mod1 <- lm(Sj1~X)
mod2 <- lm(Sj2~X)
mod3 <- lm(Sj3~X)
Intercept <- 0
Intercept[1] <- mod1$coefficients[[1]]
Intercept[2] <- mod2$coefficients[[1]]
Intercept[3] <- mod3$coefficients[[1]]
Slope <- 0
Slope[1] <- mod1$coefficients[[2]]
Slope[2] <- mod2$coefficients[[2]]
Slope[3] <- mod3$coefficients[[2]]
data.frame(Intercept,Slope,row.names=colnames(dataset)[-1])
,最终输出为
Intercept Slope
Sj1 -4.580952 1.7392857
Sj2 1.104762 1.6035714
Sj3 6.104762 0.5285714
有一个代码可以根据列数自动执行它吗?我尝试了apply
和function
没有结果。
这样做的最佳方式是什么?
答案 0 :(得分:3)
lm
接受LHS上的矩阵。请参阅文档。
f <- as.formula(paste0("cbind(", paste(names(dataset)[-1], collapse = ","), ") ~ X"))
mods <- lm(f, data = dataset)
coef(mods)
# Sj1 Sj2 Sj3
#(Intercept) -4.580952 1.104762 6.1047619
#X 1.739286 1.603571 0.5285714
PS:你应该养成使用attach
的习惯。