我有以下简单的python代码:
from __future__ import print_function
import sys
from operator import add
from pyspark import SparkContext
if __name__ == "__main__":
print(len(sys.argv))
if len(sys.argv) < 2:
print("Usage: wordcount <file>", file=sys.stderr)
exit(-1)
sc = SparkContext(appName="PythonWordCount")
lines = sc.textFile(sys.argv[2], 1)
counts = lines.flatMap(lambda x: x.split(' ')).map(lambda x: (x, 1)).reduceByKey(add)
output = counts.collect()
for (word, count) in output:
print("%s: %i" % (word, count))
sc.stop()
然后我尝试通过执行以下操作在本地群集上运行它:
spark-submit --master spark://rws-lnx-sprk01:7077 /home/edamameQ/wordcount.py wordcount /home/edamameQ/wordTest.txt
wordTest.txt绝对可用:
edamameQ@spark-cluster:~$ ls
data jars myJob.txt wordTest.txt wordcount.py
但我不断收到错误:
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1283)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1271)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1270)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
:
:
Caused by: java.io.FileNotFoundException: File file:/home/edamameQ/wordTest.txt does not exist
at org.apache.hadoop.fs.RawLocalFileSystem.getFileStatus(RawLocalFileSystem.java:520)
at org.apache.hadoop.fs.FilterFileSystem.getFileStatus(FilterFileSystem.java:398)
at org.apache.hadoop.fs.ChecksumFileSystem$ChecksumFSInputChecker.<init>(ChecksumFileSystem.java:137)
at org.apache.hadoop.fs.ChecksumFileSystem.open(ChecksumFileSystem.java:339)
使用来自s3位置的输入文件在AWS上使用相同的代码。在本地群集上运行是否需要调整?谢谢!
答案 0 :(得分:2)
您想要阅读的文件必须可以在所有工作人员上访问。如果这是本地文件,唯一的选择是为每个工作机器保留一份副本。