我正在通过从tfrecords获取想法here来阅读一批图片(由this转换)
我的图像是cifar图像,[32,32,3],你在阅读和传递图像时可以看到形状正常(batch_size=100
)
据我所知,日志中陈述的两个最值得注意的问题是
Compute status: Out of range: RandomSuffleQueue '_2_input/shuffle_batch/random_shuffle_queue' is closed and has insufficient elements (requested 100, current size 0)
我该如何解决这个问题?
日志:
1- image shape is TensorShape([Dimension(3072)])
1.1- images batch shape is TensorShape([Dimension(100), Dimension(3072)])
2- images shape is TensorShape([Dimension(100), Dimension(3072)])
W tensorflow/core/kernels/queue_ops.cc:79] Invalid argument: Shape mismatch in tuple component 0. Expected [3072], got [12288]
W tensorflow/core/common_runtime/executor.cc:1027] 0x7fa72abc89a0 Compute status: Invalid argument: Shape mismatch in tuple component 0. Expected [3072], got [12288]
[[Node: input/shuffle_batch/random_shuffle_queue_enqueue = QueueEnqueue[Tcomponents=[DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](input/shuffle_batch/random_shuffle_queue, input/sub, input/Cast_1)]]
W tensorflow/core/kernels/queue_ops.cc:79] Invalid argument: Shape mismatch in tuple component 0. Expected [3072], got [12288]
W tensorflow/core/common_runtime/executor.cc:1027] 0x7fa72ab9d080 Compute status: Invalid argument: Shape mismatch in tuple component 0. Expected [3072], got [12288]
[[Node: input/shuffle_batch/random_shuffle_queue_enqueue = QueueEnqueue[Tcomponents=[DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](input/shuffle_batch/random_shuffle_queue, input/sub, input/Cast_1)]]
W tensorflow/core/kernels/queue_ops.cc:79] Invalid argument: Shape mismatch in tuple component 0. Expected [3072], got [12288]
W tensorflow/core/common_runtime/executor.cc:1027] 0x7fa7285e55a0 Compute status: Invalid argument: Shape mismatch in tuple component 0. Expected [3072], got [12288]
[[Node: input/shuffle_batch/random_shuffle_queue_enqueue = QueueEnqueue[Tcomponents=[DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](input/shuffle_batch/random_shuffle_queue, input/sub, input/Cast_1)]]
W tensorflow/core/kernels/queue_ops.cc:79] Invalid argument: Shape mismatch in tuple component 0. Expected [3072], got [12288]
W tensorflow/core/common_runtime/executor.cc:1027] 0x7fa72aadb080 Compute status: Invalid argument: Shape mismatch in tuple component 0. Expected [3072], got [12288]
[[Node: input/shuffle_batch/random_shuffle_queue_enqueue = QueueEnqueue[Tcomponents=[DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](input/shuffle_batch/random_shuffle_queue, input/sub, input/Cast_1)]]
W tensorflow/core/common_runtime/executor.cc:1027] 0x7fa72ad499a0 Compute status: Out of range: RandomSuffleQueue '_2_input/shuffle_batch/random_shuffle_queue' is closed and has insufficient elements (requested 100, current size 0)
[[Node: input/shuffle_batch = QueueDequeueMany[component_types=[DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](input/shuffle_batch/random_shuffle_queue, input/shuffle_batch/n)]]
Traceback (most recent call last):
File "/Users/HANEL/Documents/my_cifar_train.py", line 110, in <module>
tf.app.run()
File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/platform/default/_app.py", line 11, in run
sys.exit(main(sys.argv))
File "/Users/HANEL/my_cifar_train.py", line 107, in main
train()
File "/Users/HANEL/my_cifar_train.py", line 76, in train
_, loss_value = sess.run([train_op, loss])
File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 345, in run
results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)
File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 419, in _do_run
e.code)
tensorflow.python.framework.errors.OutOfRangeError: RandomSuffleQueue '_2_input/shuffle_batch/random_shuffle_queue' is closed and has insufficient elements (requested 100, current size 0)
[[Node: input/shuffle_batch = QueueDequeueMany[component_types=[DT_FLOAT, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](input/shuffle_batch/random_shuffle_queue, input/shuffle_batch/n)]]
Caused by op u'input/shuffle_batch', defined at:
File "/Users/HANEL/my_cifar_train.py", line 110, in <module>
tf.app.run()
File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/platform/default/_app.py", line 11, in run
sys.exit(main(sys.argv))
File "/Users/HANEL/my_cifar_train.py", line 107, in main
train()
File "/Users/HANEL/my_cifar_train.py", line 39, in train
images, labels = my_input.inputs()
File "/Users/HANEL/my_input.py", line 157, in inputs
min_after_dequeue=200)
File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/training/input.py", line 453, in shuffle_batch
return queue.dequeue_many(batch_size, name=name)
File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/data_flow_ops.py", line 245, in dequeue_many
self._queue_ref, n, self._dtypes, name=name)
File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/gen_data_flow_ops.py", line 319, in _queue_dequeue_many
timeout_ms=timeout_ms, name=name)
File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/ops/op_def_library.py", line 633, in apply_op
op_def=op_def)
File "/Users
/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1710, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/Users/HANEL/tensorflow/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 988, in __init__
self._traceback =
_extract_stack()
答案 0 :(得分:10)
我有类似的问题。在网上挖掘,结果发现,如果你使用一些num_epochs
参数,你必须初始化所有local
变量,所以你的代码应该看起来像:
with tf.Session() as sess:
sess.run(tf.local_variables_initializer())
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
# do your stuff here
coord.request_stop()
coord.join(threads)
如果您发布更多代码,也许我可以深入了解它。与此同时,HTH。
答案 1 :(得分:7)
您可能处理解析的TFRecord示例错误。例如。试图将张量重塑为不相容的大小。您可以使用tf_record_iterator进行调试,以确认您正在阅读的数据以您认为的方式存储:
import tensorflow as tf
import numpy as np
tfrecords_filename = '/path/to/some.tfrecord'
record_iterator = tf.python_io.tf_record_iterator(path=tfrecords_filename)
for string_record in record_iterator:
# Parse the next example
example = tf.train.Example()
example.ParseFromString(string_record)
# Get the features you stored (change to match your tfrecord writing code)
height = int(example.features.feature['height']
.int64_list
.value[0])
width = int(example.features.feature['width']
.int64_list
.value[0])
img_string = (example.features.feature['image_raw']
.bytes_list
.value[0])
# Convert to a numpy array (change dtype to the datatype you stored)
img_1d = np.fromstring(img_string, dtype=np.float32)
# Print the image shape; does it match your expectations?
print(img_1d.shape)
答案 2 :(得分:3)
总结评论,
Compute status: Out of range: RandomSuffleQueue '_2_input/shuffle_batch/random_shuffle_queue' is closed and has insufficient elements (requested 100, current size 0)
是由队列耗尽数据引起的。这通常是因为认为你有足够的数据用于N次迭代,而实际上你只有足够的M次迭代,其中M <1。 N.
确定实际拥有多少数据的一个建议是计算在队列抛出OutOfRangeError异常之前可以读取数据的次数。
答案 3 :(得分:3)
今天我遇到了完全相同的问题,后来我发现这是我从#34;着名数据集&#34;下载的输入数据文件。 (例如https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data)导致错误:文件末尾有一些空行。删除空行,错误消失了!
答案 4 :(得分:3)
这也可能是由根本不存在的错误的tf记录文件名引起的。在进行其他检查之前,请确保指定了正确的文件路径。
答案 5 :(得分:0)
我遇到了同样的问题,之前的答案似乎都没有解决,所以我也会插话。
对我来说,问题最终成为我传递给parse_single_example的功能列表。无论出于何种原因(因为我在使用float_list?),我需要在我的功能列表中指定数组的长度或使用tf.VarLenFeature,即:
feature_structure = {'features': tf.FixedLenFeature([FEATURE_SIZE], tf.float32),
'outputs': tf.FixedLenFeature([OUTPUT_SIZE], tf.float32)}
d_features = tf.parse_single_example(serialized_example, features=feature_structure)
如果没有这个我继续得到&#34; random_shuffle_queue已经关闭且元素不足&#34;我猜的错误是因为我的解析示例中没有数据。