Spark:如何转换LabeledPoint中某些选定功能的值?

时间:2015-12-02 13:36:44

标签: scala apache-spark transform normalization

我有一个LabeledPoint和一系列我想要转换的功能:

scala> transformedData.collect()
res29: Array[org.apache.spark.mllib.regression.LabeledPoint] = Array((0.0,(400036,[7744],[2.0])), (0.0,(400036,[7744,8608],[3.0,3.0])), (0.0,(400036,[7744],[2.0])), (0.0,(400036,[133,218,2162,7460,7744,9567],[1.0,1.0,2.0,1.0,42.0,21.0])), (0.0,(400036,[133,218,1589,2162,2784,2922,3274,6914,7008,7131,7460,8608,9437,9567,199999,200021,200035,200048,200051,200056,200058,200064,200070,200072,200075,200087,400008,400011],[4.0,1.0,6.0,53.0,6.0,1.0,1.0,2.0,11.0,17.0,48.0,3.0,4.0,113.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,28.0,1.0,1.0,1.0,1.0,1.0,4.0])), (0.0,(400036,[1589,3585,4830,6935,6936,7744,400008,400011],[2.0,6.0,3.0,52.0,4.0,3.0,1.0,2.0])), (0.0,(400036,[1589,2162,2784,2922,4123,7008,7131,7792,8608],[23.0,70.0,1.0,2.0,2.0,1.0,1.0,2.0,2.0])), (0.0,(400036,[4830,6935,6936,400008,400011],[1.0,36.0...

val toTransform =  List(124,443,543,211,...

我想要使用的转换如下所示:

  1. 取(特征值+ 1)的自然对数:new_val=log(val+1)
  2. 按新值的最大值除以新值:new_val/max(new_val)(如果max不等于0)
  3. 如何从我的feature列表中为每个toTransform执行此转换(我不想创建新功能,只需转换旧功能)

2 个答案:

答案 0 :(得分:2)

@ zero323是对的,你可以更好地压扁你的LabeledPoint,然后你就可以做到以下几点:

 
// create an UDF to transform
def transform(max: Double) = udf[Double,Double] { c => Math.log1p(c) / max}

// create dummy data
val df = sc.parallelize(Seq(1, 2, 3, 4, 5, 4, 3, 2, 1)).toDF("feature")

// get the max value of the feature
val maxFeat = df.agg(max($"feature")).rdd.map { case r: Row => r.getInt(0) }.max

// apply the transformation on your feature column
val newDf = df.withColumn("norm", transform(maxFeat)($"feature"))

newDF.show
// +-------+-------------------+
// |feature|               norm|
// +-------+-------------------+
// |      1|0.13862943611198905|
// |      2|0.21972245773362192|
// |      3| 0.2772588722239781|
// |      4|0.32188758248682003|
// |      5|  0.358351893845611|
// |      4|0.32188758248682003|
// |      3| 0.2772588722239781|
// |      2|0.21972245773362192|
// |      1|0.13862943611198905|
// +-------+-------------------+

答案 1 :(得分:2)

这是可能的,但不是很简单。如果你可以在组装向量和标记点之前转换值,那么@eliasah提供的答案应该可以解决问题。否则你必须以艰难的方式做事。让我们假设您的数据看起来像这样

import org.apache.spark.mllib.linalg.{Vector, Vectors, SparseVector, DenseVector}
import org.apache.spark.mllib.regression.LabeledPoint

val points = sc.parallelize(Seq(
  LabeledPoint(1.0, Vectors.sparse(6, Array(1, 4, 5), Array(2.0, 6.0, 3.0))),
  LabeledPoint(2.0, Vectors.sparse(6, Array(2, 3), Array(0.1, 1.0)))
))

接下来让我们定义小助手:

import breeze.linalg.{DenseVector => BDV, SparseVector => BSV, Vector => BV}

def toBreeze(v: Vector): BV[Double] = v match {
  case DenseVector(values) => new BDV[Double](values)
  case SparseVector(size, indices, values) => {
    new BSV[Double](indices, values, size)
  }
}

并按如下方式反汇编LabeledPoints

val pairs = points.map(lp => (lp.label, toBreeze(lp.features)))

现在可以定义转换函数:

def transform(indices: Seq[Int])(v: BV[Double]) = {
  for(i <- indices) v(i) = breeze.numerics.log(v(i) + 1.0)
  v
}

和变换对:

val indices = Array(2, 4)
val transformed = pairs.mapValues(transform(indices))

最后让我们找到最大值:

val maxV = transformed.values.reduce(breeze.linalg.max(_, _))

def divideByMax(m: BV[Double], indices: Seq[Int])(v: BV[Double]) = {
  for (i <- indices) if(m(i) != 0) v(i) /= m(i) 
  v
}

val divided = transformed.mapValues(divideByMax(maxV, indices))

并映射到LabelPoints

def toSpark(v: BV[Double]) = v match {
  case v: BDV[Double] => new DenseVector(v.toArray)
  case v: BSV[Double] => new SparseVector(v.length, v.index, v.data)
}

divided.map{case (l, v) => LabeledPoint(l, toSpark(v))}