术语弹性搜索中嵌套字段的聚合

时间:2015-12-02 13:20:39

标签: elasticsearch aggregate-functions

我在弹性搜索中有下一个字段映射(YML中的定义):

"products_filter": [
{
"filter_name": "Rahmengröße",
"filter_value": "33,5 cm"
}
,
{
"filter_name": "color",
"filter_value": "gelb"
}
,
{
"filter_name": "Rahmengröße",
"filter_value": "39,5 cm"
}
,
{
"filter_name": "Rahmengröße",
"filter_value": "45,5 cm"
}]

每个文档都有很多过滤器,它们看起来像:

{
  "aggs": {
    "bla": {
      "terms": {
        "field": "products_filter.filter_name"
      },
      "aggs": {
        "bla2": {
          "terms": {
            "field": "products_filter.filter_value"
          }
        }
      }
    }
  }
}

我尝试获取每个过滤器的唯一过滤器名称列表和唯一过滤器值列表。

我的意思是,我希望获得如下结构: Rahmengröße:
  39,5厘米
  45,5厘米
  33.5厘米
颜色:
  盖尔布

为了得到它,我尝试了几种聚合变体,例如:

"bla": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 103,
"buckets": [
{
"key": "color",
"doc_count": 9,
"bla2": {
"doc_count_error_upper_bound": 4,
"sum_other_doc_count": 366,
"buckets": [
{
"key": "100",
"doc_count": 5
}
,
{
"key": "cm",
"doc_count": 5
}
,
{
"key": "unisex",
"doc_count": 5
}
,
{
"key": "11",
"doc_count": 4
}
,
{
"key": "160",
"doc_count": 4
}
,
{
"key": "22",
"doc_count": 4
}
,
{
"key": "a",
"doc_count": 4
}
,
{
"key": "alu",
"doc_count": 4
}
,
{
"key": "aluminium",
"doc_count": 4
}
,
{
"key": "aus",
"doc_count": 4
}
]
}
}
,

这个要求是错误的。

它将返回我的唯一过滤器名称列表,每个过滤器名称都包含所有filter_values列表。

.centralcontainer {
    background: none !important;
}

此外,我尝试使用反向嵌套聚合,但它对我没有帮助。

所以我认为我的尝试存在一些逻辑错误?

1 个答案:

答案 0 :(得分:6)

正如我所说的那样。您的问题是您的文本被分析,而弹性搜索总是在令牌级别聚合。因此,为了解决这个问题,您的字段值必须编入索引为单个标记。有两种选择:

  • 不分析它们
  • 使用关键字分析器+小写(不区分大小写的aggs)
  • 对它们进行索引

这样就可以设置自定义关键字分析器,其中包含小写过滤器和已删除的重音符(ö => oß => ss以及字段的其他字段,因此可以将它们用于聚合({{1 }和raw):

keyword

您给我们的测试文件:

PUT /test
{
  "settings": {
    "analysis": {
      "analyzer": {
        "my_analyzer_keyword": {
          "type": "custom",
          "tokenizer": "keyword",
          "filter": [
            "asciifolding",
            "lowercase"
          ]
        }
      }
    }
  },
  "mappings": {
    "data": {
      "properties": {
        "products_filter": {
          "type": "nested",
          "properties": {
            "filter_name": {
              "type": "string",
              "analyzer": "standard",
              "fields": {
                "raw": {
                  "type": "string",
                  "index": "not_analyzed"
                },
                "keyword": {
                  "type": "string",
                  "analyzer": "my_analyzer_keyword"
                }
              }
            },
            "filter_value": {
              "type": "string",
              "analyzer": "standard",
              "fields": {
                "raw": {
                  "type": "string",
                  "index": "not_analyzed"
                },
                "keyword": {
                  "type": "string",
                  "analyzer": "my_analyzer_keyword"
                }
              }
            }
          }
        }
      }
    }
  }
}

这将是使用PUT /test/data/1 { "products_filter": [ { "filter_name": "Rahmengröße", "filter_value": "33,5 cm" }, { "filter_name": "color", "filter_value": "gelb" }, { "filter_name": "Rahmengröße", "filter_value": "39,5 cm" }, { "filter_name": "Rahmengröße", "filter_value": "45,5 cm" } ] } 字段进行汇总的查询:

raw

它确实带来了预期的结果(带有过滤器名称的桶和带有值的子桶):

GET /test/_search
{
  "size": 0,
  "aggs": {
    "Nesting": {
      "nested": {
        "path": "products_filter"
      },
      "aggs": {
        "raw_names": {
          "terms": {
            "field": "products_filter.filter_name.raw",
            "size": 0
          },
          "aggs": {
            "raw_values": {
              "terms": {
                "field": "products_filter.filter_value.raw",
                "size": 0
              }
            }
          }
        }
      }
    }
  }
}

Alternitavely,你可以使用带有关键字分析器的字段(和一些规范化)来获得更通用和不区分大小写的结果:

{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "Nesting": {
      "doc_count": 4,
      "raw_names": {
        "doc_count_error_upper_bound": 0,
        "sum_other_doc_count": 0,
        "buckets": [
          {
            "key": "Rahmengröße",
            "doc_count": 3,
            "raw_values": {
              "doc_count_error_upper_bound": 0,
              "sum_other_doc_count": 0,
              "buckets": [
                {
                  "key": "33,5 cm",
                  "doc_count": 1
                },
                {
                  "key": "39,5 cm",
                  "doc_count": 1
                },
                {
                  "key": "45,5 cm",
                  "doc_count": 1
                }
              ]
            }
          },
          {
            "key": "color",
            "doc_count": 1,
            "raw_values": {
              "doc_count_error_upper_bound": 0,
              "sum_other_doc_count": 0,
              "buckets": [
                {
                  "key": "gelb",
                  "doc_count": 1
                }
              ]
            }
          }
        ]
      }
    }
  }
}

结果就是这样:

GET /test/_search
{
  "size": 0,
  "aggs": {
    "Nesting": {
      "nested": {
        "path": "products_filter"
      },
      "aggs": {
        "keyword_names": {
          "terms": {
            "field": "products_filter.filter_name.keyword",
            "size": 0
          },
          "aggs": {
            "keyword_values": {
              "terms": {
                "field": "products_filter.filter_value.keyword",
                "size": 0
              }
            }
          }
        }
      }
    }
  }
}