我有一个如下所示的数据表。我想计算每个市场的每个信号的回报相关性。
dt = data.table(mkt = rep(letters[1:3], each = 3), rtn = rnorm(9), signal1=rnorm(9), signal2=rnorm(9), signal3 = rnorm(9))
mkt rtn signal1 signal2 signal3
1: a 0.2488643 0.4110516 -0.04861252 -1.3599824
2: a 1.3387256 -0.4418436 -0.17055841 -1.2161698
3: a -1.4058236 -1.2624645 -0.24315048 -1.2722546
4: b 1.7056606 0.2618591 2.60779232 0.7786226
5: b 0.7913587 -1.0596116 0.31152541 1.7336651
6: b -1.8690651 0.1942825 0.95430075 -0.7030462
7: c -0.4937575 -1.8645226 -0.32312077 -1.7138482
8: c -0.7153342 -0.5142624 -0.43817789 -1.3637261
9: c 0.3766730 -0.0954339 0.71159756 -1.2118075
dt[, lapply(.SD, function(x) cor(x, rtn, use = 'c')), .SDcols = 3:5, by = mkt]
Error in is.data.frame(y) : object 'rtn' not found
如何让J中的匿名函数知道rtn列?
答案 0 :(得分:2)
我认为一种方法是将其包含在.SDcols
中,以便匿名函数能够找到rtn
,然后可能会删除rtn
列(因为它只会将1作为值,因为它将与自身相关):
dt[, lapply(.SD, function(x) cor(x, rtn, use = 'c')), .SDcols = c(2, 3:5), by = mkt]
mkt rtn signal1 signal2 signal3
1: a 1 0.6759421 -0.5037837 0.8605805
2: b 1 -0.8494135 0.6720274 0.7832928
3: c 1 -0.9425291 0.5683629 -0.9976231
然后你可以这样做:
dt2 <- dt[, lapply(.SD, function(x) cor(x, rtn, use = 'c')), .SDcols = c(2, 3:5), by = mkt]
dt2[, rtn := NULL]
dt2
# mkt signal1 signal2 signal3
#1: a 0.6759421 -0.5037837 0.8605805
#2: b -0.8494135 0.6720274 0.7832928
#3: c -0.9425291 0.5683629 -0.9976231