我有以下CSV data:
id,gene,celltype,stem,stem,stem,bcell,bcell,tcell
id,gene,organs,bm,bm,fl,pt,pt,bm
134,foo,about_foo,20,10,11,23,22,79
222,bar,about_bar,17,13,55,12,13,88
请注意,它包含两个标头。我想做的是分组 第2行开始,按器官和细胞类型平均。 因此它创建了这样的分层数据框:
bm stem, bcell, tcell
foo (20+10)/2 0 79/1=79
bar (17+13)/2 0 88/1=88
fl stem, bcell, tcell
foo 11/1=11 0 0
bar 55/1=55
pt stem, bcell, tcell
foo 0 (23+22)/2 0
bar 0 (12+13)/2 0
我怎样才能做到这一点?
我坚持使用以下代码:
import pandas as pd
df = pd.read_csv("http://dpaste.com/1X74TNP.txt")
更新
import pandas as pd
df = pd.read_csv("http://dpaste.com/1X74TNP.txt",header=None,index_col=[1,2]).iloc[:, 1:]
df.columns = pd.MultiIndex.from_arrays(df.ix[:2].values)
df = df.ix[2:]
df.index.names = ['cell', 'organ']
df = df.reset_index('organ', drop=True)
result = df.groupby(level=[0, 1], axis=1).mean().stack().replace(np.nan, 0).unstack().swaplevel(0,1, axis=1).sort_index(axis=1)
给出:
DataError: No numeric types to aggregate
答案 0 :(得分:2)
df = pd.read_csv(join(DESKTOP, 'bio.csv'), header=None, index_col=[1,2]).iloc[:, 1:]
df.columns = pd.MultiIndex.from_arrays(df.ix[:2].values)
df = df.ix[2:].astype(int)
df.index.names = ['cell', 'organ']
df = df.reset_index('organ', drop=True)
avg = df.groupby(level=[0, 1], axis=1).mean()
result = avg.stack().replace(np.nan, 0).unstack()
result = result.swaplevel(0,1, axis=1).sort_index(axis=1)
bm fl pt
bcell stem tcell bcell stem tcell bcell stem tcell
cell
foo 0 15 79 0 11 0 22.5 0 0
bar 0 15 88 0 55 0 12.5 0 0
要访问其中一个属性,请使用:
print(result.loc[:, 'bm'])
bcell stem tcell
cell
foo 0 15 79
bar 0 15 88