在此数据框中:
double[] ar = new double[]{0, 0.3, 0.7, 1.1, 1.5, 1.9, 2.3, 2.7, 3.1, 3.5, 3.9};
var odds = ar.Where((val, index) => index % 2 != 0);
var evens = ar.Where((val, index) => index % 2 == 0);
我想在Item <- c("A","B","A","A","A","A","A","B")
Trial <- c("Fam","Fam","Test","Test","Test","Test","Test","Test")
Condition <-c("apple","cherry","Trash","Trash","Trash","Trash","Trash","Trash")
ID <- c(rep("01",8))
df <- data.frame(cbind(Item,Trial,Condition,ID))
替换df$condition
的“已删除邮件”值。根据{{1}}中Fam和测试试验的匹配,df$Trial == "Test"
的新值应为df$condition
的副本df$condition
。
所以我的最终数据框应该是这样的
df$Trial == "Fam"
最终我想在原始数据框中为唯一ID执行此操作。所以我想我将不得不在df$Item
左右的时间内应用该函数。
答案 0 :(得分:6)
您可以 /**
* @ORM\ManyToOne(targetEntity="Lead", inversedBy="leadPayment")
*/
private $lead;
在df
上执行自我二进制加入,并使用{更新Trial != "Test"
列引用 {1}}包,例如
Condition
或者(对@docendos的一些修改)建议,只需
data.table
答案 1 :(得分:2)
以下是使用dplyr
library(dplyr)
distinct(df) %>%
filter(Trial=='Fam') %>%
left_join(df, ., by = c('Item', 'ID')) %>%
mutate(Condition = ifelse(Condition.x=='Trash',
as.character(Condition.y), as.character(Condition.x))) %>%
select(c(1,2,4,7))
或者@docendodiscimus建议
df %>%
group_by(ID, Item) %>%
mutate(Condition = Condition[Condition != "Trash"])
答案 2 :(得分:2)
您也可以创建一个for循环并循环遍历所有需要更改的值。此设置可以轻松添加其他项目和/或稍后更改条件类型。
> for(i in 1:nrow(df)) {
>
> if(df[i, 1] == "A") {
> df2[i, 3] <- "apple"
> }
> else if(df[i, 1] == "B") {
> df2[i, 3] <- "cherry"
> }
> }