必须有一个简单的方法来做到这一点,但我无法在SO上找到一个优雅的解决方案或自己解决。
我正在尝试根据DataFrame中的列集计算重复值的数量。
示例:
print df
Month LSOA code Longitude Latitude Crime type
0 2015-01 E01000916 -0.106453 51.518207 Bicycle theft
1 2015-01 E01000914 -0.111497 51.518226 Burglary
2 2015-01 E01000914 -0.111497 51.518226 Burglary
3 2015-01 E01000914 -0.111497 51.518226 Other theft
4 2015-01 E01000914 -0.113767 51.517372 Theft from the person
我的解决方法:
counts = dict()
for i, row in df.iterrows():
key = (
row['Longitude'],
row['Latitude'],
row['Crime type']
)
if counts.has_key(key):
counts[key] = counts[key] + 1
else:
counts[key] = 1
我得到了计数:
{(-0.11376700000000001, 51.517371999999995, 'Theft from the person'): 1,
(-0.111497, 51.518226, 'Burglary'): 2,
(-0.111497, 51.518226, 'Other theft'): 1,
(-0.10645299999999999, 51.518207000000004, 'Bicycle theft'): 1}
除了这个代码也可以改进之外(随意评论如何),通过Pandas做到这一点的方法是什么?
对于那些感兴趣的人,我正在处理来自https://data.police.uk/
的数据集答案 0 :(得分:17)
您可以将groupby
与功能size一起使用。
然后我重置索引,将列0
重命名为count
。
print df
Month LSOA code Longitude Latitude Crime type
0 2015-01 E01000916 -0.106453 51.518207 Bicycle theft
1 2015-01 E01000914 -0.111497 51.518226 Burglary
2 2015-01 E01000914 -0.111497 51.518226 Burglary
3 2015-01 E01000914 -0.111497 51.518226 Other theft
4 2015-01 E01000914 -0.113767 51.517372 Theft from the person
df = df.groupby(['Longitude', 'Latitude', 'Crime type']).size().reset_index(name='count')
print df
Longitude Latitude Crime type count
0 -0.113767 51.517372 Theft from the person 1
1 -0.111497 51.518226 Burglary 2
2 -0.111497 51.518226 Other theft 1
3 -0.106453 51.518207 Bicycle theft 1
print df['count']
0 1
1 2
2 1
3 1
Name: count, dtype: int64
答案 1 :(得分:2)
通过collections.Counter
:
from collections import Counter
c = Counter(list(zip(df.Longitude, df.Latitude, df.Crime_type)))
结果:
Counter({(-0.113767, 51.517372, 'Theft-from-the-person'): 1,
(-0.111497, 51.518226, 'Burglary'): 2,
(-0.111497, 51.518226, 'Other-theft'): 1,
(-0.106453, 51.518207, 'Bicycle-theft'): 1})
答案 2 :(得分:1)
您可以对经度和纬度进行分组,然后在Crime type
列上使用value_counts
。
df.groupby(['Longitude', 'Latitude'])['Crime type'].value_counts().to_frame('count')
count
Longitude Latitude Crime type
-0.113767 51.517372 Theft from the person 1
-0.111497 51.518226 Burglary 2
Other theft 1
-0.106453 51.518207 Bicycle theft 1