计算Pandas DataFrame中的重复值

时间:2015-11-30 07:38:47

标签: python pandas count duplicates

必须有一个简单的方法来做到这一点,但我无法在SO上找到一个优雅的解决方案或自己解决。

我正在尝试根据DataFrame中的列集计算重复值的数量。

示例:

print df

    Month   LSOA code   Longitude   Latitude    Crime type
0   2015-01 E01000916   -0.106453   51.518207   Bicycle theft
1   2015-01 E01000914   -0.111497   51.518226   Burglary
2   2015-01 E01000914   -0.111497   51.518226   Burglary
3   2015-01 E01000914   -0.111497   51.518226   Other theft
4   2015-01 E01000914   -0.113767   51.517372   Theft from the person

我的解决方法:

counts = dict()
for i, row in df.iterrows():
    key = (
            row['Longitude'],
            row['Latitude'],
            row['Crime type']
        )

    if counts.has_key(key):
        counts[key] = counts[key] + 1
    else:
        counts[key] = 1

我得到了计数:

{(-0.11376700000000001, 51.517371999999995, 'Theft from the person'): 1,
 (-0.111497, 51.518226, 'Burglary'): 2,
 (-0.111497, 51.518226, 'Other theft'): 1,
 (-0.10645299999999999, 51.518207000000004, 'Bicycle theft'): 1}

除了这个代码也可以改进之外(随意评论如何),通过Pandas做到这一点的方法是什么?

对于那些感兴趣的人,我正在处理来自https://data.police.uk/

的数据集

3 个答案:

答案 0 :(得分:17)

您可以将groupby与功能size一起使用。 然后我重置索引,将列0重命名为count

print df
  Month LSOA       code  Longitude   Latitude             Crime type
0    2015-01  E01000916  -0.106453  51.518207          Bicycle theft
1    2015-01  E01000914  -0.111497  51.518226               Burglary
2    2015-01  E01000914  -0.111497  51.518226               Burglary
3    2015-01  E01000914  -0.111497  51.518226            Other theft
4    2015-01  E01000914  -0.113767  51.517372  Theft from the person

df = df.groupby(['Longitude', 'Latitude', 'Crime type']).size().reset_index(name='count')
print df
   Longitude   Latitude             Crime type  count
0  -0.113767  51.517372  Theft from the person      1
1  -0.111497  51.518226               Burglary      2
2  -0.111497  51.518226            Other theft      1
3  -0.106453  51.518207          Bicycle theft      1

print df['count']
0    1
1    2
2    1
3    1
Name: count, dtype: int64

答案 1 :(得分:2)

通过collections.Counter

可以实现O(n)解决方案
from collections import Counter

c = Counter(list(zip(df.Longitude, df.Latitude, df.Crime_type)))

结果:

Counter({(-0.113767, 51.517372, 'Theft-from-the-person'): 1,
         (-0.111497, 51.518226, 'Burglary'): 2,
         (-0.111497, 51.518226, 'Other-theft'): 1,
         (-0.106453, 51.518207, 'Bicycle-theft'): 1})

答案 2 :(得分:1)

您可以对经度和纬度进行分组,然后在Crime type列上使用value_counts

df.groupby(['Longitude', 'Latitude'])['Crime type'].value_counts().to_frame('count')

                                           count
Longitude Latitude  Crime type                  
-0.113767 51.517372 Theft from the person      1
-0.111497 51.518226 Burglary                   2
                    Other theft                1
-0.106453 51.518207 Bicycle theft              1