public BCD multiplyBCDs(BCD other) {
BCD thisBCD = new BCD(digit);
BCD newBCD = new BCD(0);
int DIGIT = 0;
do {
newBCD = newBCD.addBCDs(other.multiplyBy(thisBCD.nthDigit(DIGIT)));
other = other.multiplyByTen();
DIGIT++;
} while (DIGIT < thisBCD.numberOfDigits());
return newBCD;
}
程序的其余部分对于解决我的问题不应该太重要,但如果是,我会将其余部分发布在底部。每个BCD基本上是存储在数组中的整数。 thisBCD等于222,BCD other也等于222.我的目标是将这两个BCD相乘。
nthDigit与thisBCD [DIGIT]基本相同,返回该数字的某个数字。
MultiplyBy将BCD乘以给定的int。
MultiplyByTen乘以10.(duh)
addBCDs将2个BCD加在一起。
我的问题是,该方法不是返回49,284((222 * 2)+(222 * 20)+(222 * 200),而是返回1332(222 *(2 + 2 + 2)。
如果您需要,我的程序和驱动程序的其余部分如下:
public class BCD {
private int[] digit;
// constructor (creates array from another array)
public BCD(int bcdDigits[]) {
digit = new int[bcdDigits.length];
for (int i = 0; i < digit.length; i++) {
digit[i] = bcdDigits[i];
}
}
// constructor (creates array from an int)
public BCD(int num) {
digit = new int[1];
int DIGIT = num % 10;
digit[0] = DIGIT;
num /= 10;
while (num > 0) {
DIGIT = num % 10;
addADigit(DIGIT);
num /= 10;
}
}
// returns number of digits in bcd
public int numberOfDigits() {
int length = digit.length;
return length;
}
// returns the value of a certain digit in the BCD
public int nthDigit(int n) {
System.out.println("N: " + n);
if (n >= digit.length || n < 0) {
return -1;
} else {
return digit[digit.length - 1 - n];
}
}
// prints the BCD backwards (printing the original number being stored in
// the array)
public void print() {
for (int i = digit.length - 1; i >= 0; i--) {
System.out.print(digit[i]);
if (i % 3 == 0 && i != 0) {
System.out.print(",");
}
}
}
// adds a digit to the BCD
public void addADigit(int newdigit) {
int[] a = new int[digit.length + 1];
for (int i = 0; i < digit.length; i++) {
a[i] = digit[i];
}
a[a.length - 1] = newdigit;
digit = a;
}
public BCD addBCDs(BCD other) {
BCD newBCD = null;
int length;
if (other.numberOfDigits() > digit.length) {
length = other.numberOfDigits();
} else {
length = digit.length;
}
int count = 0;
int temp = 0;
int carry = 0;
while (count < length + 1) {
temp = 0;
// Adds the value of digit[count] to temp, assuming that there is a
// number available there.
if (count <= digit.length - 1) {
temp += digit[count];
}
// Adds the value of other.nthDigit(count) to temp, assuming that
// there is a number available there.
if (count <= (other.numberOfDigits()) - 1) {
temp += other.nthDigit(count);
}
// either adds temp as the first digit of the newBCD, or adds temp %
// 10, and sets up a carry. This section is for the first digit
// only.
if (count == 0 && temp < 10) {
newBCD = new BCD(temp);
} else if (count == 0 && temp >= 10) {
newBCD = new BCD(temp % 10);
carry++;
}
// either adds temp as the next digit of the newBCD, or adds temp %
// 10, and sets up a carry. This section works for all digits
// excluding the first.
if (count > 0 && temp + carry < 10 && count < length) {
newBCD.addADigit(temp + carry);
carry = 0;
} else if (count > 0 && temp + carry < 10 && count == length && temp + carry != 0) {
newBCD.addADigit(temp + carry);
carry = 0;
} else if (temp + carry >= 10 && count > 0) {
newBCD.addADigit((temp + carry) % 10);
carry = 0;
carry++;
}
count++;
}
return newBCD;
}
public BCD multiplyByTen() {
BCD oldBCD = new BCD(digit);
if (oldBCD.numberOfDigits() == 1 && oldBCD.nthDigit(0) == 0) {
BCD newBCD = new BCD(0);
return newBCD;
} else {
int[] newArray = new int[oldBCD.numberOfDigits() + 1];
newArray[0] = 0;
for (int i = 1; i < newArray.length; i++) {
newArray[i] = oldBCD.nthDigit(i - 1);
}
BCD newBCD = new BCD(newArray);
return newBCD;
}
}
public BCD multiplyBy(int num) {
int[] digit2 = new int[digit.length + num];
System.out.println("Num: " + num);
for (int i = 0; i < digit.length; i++) {
digit2[i] = digit[i];
}
int length = 0;
if (digit.length > num) {
length = num;
} else {
length = digit.length;
}
if (num == 0) {
BCD newBCD = new BCD(0);
return newBCD;
} else if (num == 1) {
BCD newBCD = new BCD(digit);
return newBCD;
} else if (num == 10) {
BCD newBCD = new BCD(digit);
newBCD = newBCD.multiplyByTen();
return newBCD;
}
BCD newBCD = null;
int temp = 0;
int carry = 0;
for (int count = 0; count < (digit2.length); count++) {
if (count == 0) {
temp = digit2[count] * num;
if ((temp + carry) == 0 && count >= length) {
} else {
newBCD = new BCD((temp + carry) % 10);
}
carry = temp / 10;
} else {
temp = digit2[count] * num;
if ((temp + carry) == 0 && count >= length) {
} else {
newBCD.addADigit((temp + carry) % 10);
}
carry = temp / 10;
}
}
return newBCD;
}
public BCD multiplyBCDs(BCD other) {
BCD thisBCD = new BCD(digit);
BCD newBCD = new BCD(0);
int DIGIT = 0;
do {
newBCD = newBCD.addBCDs(other.multiplyBy(thisBCD.nthDigit(DIGIT)));
System.out.println("thisBCD nthDigit: " + thisBCD.nthDigit(DIGIT));
other = other.multiplyByTen();
System.out.print("\nOther: ");
other.print();
DIGIT++;
} while (DIGIT < thisBCD.numberOfDigits());
return newBCD;
}
// public static BCD factorial(int num) {
// return newBCD; // this is a different newBCD you still need to create
// }
}
司机:
public class BCDDriver {
public static void main(String[] args) {
BCD B1 = new BCD(22);
System.out.print("B1: ");
B1.print();
B1 = B1.multiplyBy(2);
System.out.print("\nProduct: ");
B1.print();
BCD B2 = new BCD(22);
System.out.print("\nB2: ");
B2.print();
BCD B3 = new BCD(22);
System.out.print("\nB3: ");
B3.print();
B2 = B2.multiplyBCDs(B3);
System.out.print("\nProduct: ");
B2.print();
}
}
答案 0 :(得分:1)
这里有几个问题。我不打算为你做功课,但是:
在添加方法中,您要将this.digit[count]
添加到other.nthdigit(count)
。您应该将this.digit[count]
添加到other.digit[count]
或this.nthdigit(count)
添加到other.nthdigit(count)
,具体取决于循环的运行方式。 (这个问题是通过使用测试值来掩饰的,例如222:不要这样做。)
add方法的其余部分基本上是无意义的。不需要为每个数字创建一个新的BCD
,例如:您可以直接对目标数组进行所有添加。你需要写下添加的手工方法并实现它。它有大约五行代码,而不是四十几行。
在'multiplyByTen()方法中,确实不需要使用零来创建一个特殊情况,尽管我可能会出于速度原因这样做。没有必要证明您对问题的理解。
同样,您的multiplyBy()
方法大约是必要时间的四倍。这不复杂。仅需要4-5行代码。在这里,您再次创建一个新的BCD
每个数字,这是不必要的,并且与其他地方的特殊套管零点的想法背道而驰。事实上,除了性能优化之外,零点并不是特殊情况。
您的multiplyBCDs()
方法看起来非常优雅,与其他方法不同,但我不相信它处理正确。