使用nltk在unicode文本中查找bigrams

时间:2015-11-29 19:36:16

标签: python nltk

我试图在unicode文本中找到最常见的双字母组合。这是我正在使用的代码:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import nltk
from nltk.collocations import *
import codecs
line = ""
open_file = codecs.open('s.txt', 'r', encoding='utf-8').read()
for val in open_file:
    line += val.lower()
tokens = line.split()

bigram_measures = nltk.collocations.BigramAssocMeasures()
finder = BigramCollocationFinder.from_words(tokens)
finder.apply_freq_filter(1)
a = finder.ngram_fd.viewitems()
for i,j in a:
    print i,j

s.txt文件包含以下文字:çalışmak naber çösd bfkd

这是输出:

(u'\xe7\xf6sd', u'bfkd') 1
(u'naber', u'\xe7\xf6sd') 1
(u'\xe7al\u0131\u015fmak', u'naber') 1

但我想用这种格式:

çalışmak naber 1
naber çösd 1
çösd bfkd 1

如何解决这个unicode问题?

1 个答案:

答案 0 :(得分:2)

您需要明确地打印元组的元素,而不是整个元组。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import nltk
from nltk.collocations import *
import codecs
line = ""
open_file = codecs.open('s.txt', 'r', encoding='utf-8').read()
for val in open_file:
    line += val.lower()
tokens = line.split()

bigram_measures = nltk.collocations.BigramAssocMeasures()
finder = BigramCollocationFinder.from_words(tokens)
finder.apply_freq_filter(1)
a = finder.ngram_fd.viewitems()
for i, j in a:
  print("{0} {1} {2}".format(i[0], i[1], j))
  

test.py

l = [((u'\xe7\xf6sd', u'bfkd'), 1), ((u'naber', u'\xe7\xf6sd'), 1), ((u'\xe7al\u0131\u015fmak', u'naber'), 1)]
for i, j in l:
  print("{0} {1} {2}".format(i[0], i[1], j))

运行:

14:58 $ python test.py
çösd bfkd 1
naber çösd 1
çalışmak naber 1