将已删除的结果集保存到csv文件中

时间:2015-11-27 21:06:25

标签: python parsing csv screen-scraping ebay

我写了一个小脚本,它接受一个ebay结果集并将每个字段存储在一个不同的变量中:链接,价格,出价。

如何获取变量并将每个拍卖项目的每个结果保存到csv文件中,其中每行代表不同的拍卖项目?

例如:链接,价格,出价

到目前为止,这是我的代码:

import requests, bs4
import csv
import requests
import pandas as pd
res = requests.get('http://www.ebay.com/sch/i.html?LH_Complete=1&LH_Sold=1&_from=R40&_sacat=0&_nkw=gerald%20ford%20autograph&rt=nc&LH_Auction=1&_trksid=p2045573.m1684')
res.raise_for_status()
soup=bs4.BeautifulSoup(res.text)

# grabs the link, selling price, and # of bids from historical auctions
links = soup.find_all(class_="vip")
prices = soup.find_all("span", "bold bidsold")
bids = soup.find_all("li", "lvformat")

2 个答案:

答案 0 :(得分:2)

这应该做的工作:

import csv
import requests
import bs4

res = requests.get('http://www.ebay.com/sch/i.html?LH_Complete=1&LH_Sold=1&_from=R40&_sacat=0&_nkw=gerald%20ford%20autograph&rt=nc&LH_Auction=1&_trksid=p2045573.m1684')
res.raise_for_status()
soup = bs4.BeautifulSoup(res.text)

# grab all the links and store its href destinations in a list
links = [e['href'] for e in soup.find_all(class_="vip")]

# grab all the bid spans and split its contents in order to get the number only
bids = [e.span.contents[0].split(' ')[0] for e in soup.find_all("li", "lvformat")]

# grab all the prices and store those in a list
prices = [e.contents[0] for e in soup.find_all("span", "bold bidsold")]

# zip each entry out of the lists we generated before in order to combine the entries
# belonging to each other and write the zipped elements to a list
l = [e for e in zip(links, prices, bids)]

# write each entry of the rowlist `l` to the csv output file
with open('ebay.csv', 'w') as csvfile:
    w = csv.writer(csvfile)
    for e in l:
        w.writerow(e)

因此,您将获得一个csv文件,其中,(逗号)为分隔符。

答案 1 :(得分:0)

import requests, bs4
import numpy as np
import requests
import pandas as pd

res = requests.get('http://www.ebay.com/sch/i.html? LH_Complete=1&LH_Sold=1&_from=R40&_sacat=0&_nkw=gerald%20ford%20autograph&r        t=nc&LH_Auction=1&_trksid=p2045573.m1684')
res.raise_for_status()
soup=bs4.BeautifulSoup(res.text, "lxml")

# grabs the link, selling price, and # of bids from historical auctions
df = pd.DataFrame()


l = []
p = []
b = []


for links in soup.find_all(class_="vip"):
    l.append(links)

for bids in soup.find_all("li", "lvformat"):
    b.append(bids)

for prices in soup.find_all("span", "bold bidsold"):
    p.append(prices)

x = np.array((l,b,p))
z = x.transpose()
df = pd.DataFrame(z)
df.to_csv('/Users/toasteez/ebay.csv')