编写从SparkR ::: map返回的R数据帧

时间:2015-11-27 16:04:26

标签: r apache-spark sparkr

我正在使用SparkR ::: map,我的函数为每个输入行返回一个大的R数据帧,每个输入行都有相同的形状。我想把这些数据帧写成镶木地板文件,而不是收集它们。我可以在我的输出列表上映射write.df吗?我可以让工作人员完成拼写木地板的任务吗?

我现在有工作。例。我对此感到高兴,除了我没想到减少会隐含地收集'因为我想把结果DF写成Parquet。

另外,我不相信::: map实际上并行做了什么。我是否需要始终致电' parallelise'还有吗?

#! /usr/bin/Rscript
library(SparkR, lib.loc="/opt/spark-1.5.1-bin-without-hadoop/R/lib")

source("jdbc-utils.R")

options(stringsAsFactors = FALSE)

# I dislike having these here but when I move them into main(), it breaks - the sqlContext drops.
assign("sc", sparkR.init(master = "spark://poc-master-1:7077",
                         sparkHome = "/opt/spark-1.5.1-bin-without-hadoop/",
                         appName = "Peter Spark test",
                         list(spark.executor.memory="4G")), envir = .GlobalEnv)
assign("sqlContext", sparkRSQL.init(sc), envir =.GlobalEnv)

#### MAP function ####
run.model <- function(v) {
  x <- v$xs[1]
  y <- v$ys[1]
  startTime     <- format(Sys.time(), "%F %T")
  xs <- c(1:x)
  endTime <- format(Sys.time(), "%F %T")
  hostname <- system("hostname", intern = TRUE)
  xys <- data.frame(xs,y,startTime,endTime,hostname,stringsAsFactors = FALSE)
  return(xys)
}

# HERE BE THE SCRIPT BIT
main <- function() {

  # Make unique identifiers for each run
  xs <- c(1:365)
  ys <- c(1:1)
  xys <- data.frame(xs,ys,stringsAsFactors = FALSE)

  # Convert to Spark dataframe for mapping
  sqlContext <- get("sqlContext", envir = .GlobalEnv)
  xys.sdf <- createDataFrame(sqlContext, xys)

  # Let Spark do what Spark does
  output.list <- SparkR:::map(xys.sdf, run.model)

  # Reduce gives us a single R dataframe, which may not be what we want.
  output.redux <- SparkR:::reduce(output.list, rbind)

  # Or you can have it as a list of data frames.
  output.col <- collect(output.list)

  return(NULL)
}

1 个答案:

答案 0 :(得分:3)

假设您的数据或多或少看起来像这样:

rdd <- SparkR:::parallelize(sc, 1:5)
dfs <- SparkR:::map(rdd, function(x) mtcars[(x * 5):((x + 1) * 5), ])

并且所有列都支持您可以将其转换为行格式的类型:

rows <- SparkR:::flatMap(dfs, function(x) {
  data <- as.list(x)
  args <- list(FUN = list, SIMPLIFY = FALSE, USE.NAMES = FALSE)
  do.call(mapply, append(args, data))
})

致电createDataFrame

sdf <- createDataFrame(sqlContext, rows)
head(sdf)

##    mpg cyl  disp  hp drat   wt  qsec vs am gear carb
## 1 18.7   8 360.0 175 3.15 3.44 17.02  0  0    3    2
## 2 18.1   6 225.0 105 2.76 3.46 20.22  1  0    3    1
## 3 14.3   8 360.0 245 3.21 3.57 15.84  0  0    3    4
## 4 24.4   4 146.7  62 3.69 3.19 20.00  1  0    4    2
## 5 22.8   4 140.8  95 3.92 3.15 22.90  1  0    4    2
## 6 19.2   6 167.6 123 3.92 3.44 18.30  1  0    4    4

printSchema(sdf)

## root
##  |-- mpg: double (nullable = true)
##  |-- cyl: double (nullable = true)
##  |-- disp: double (nullable = true)
##  |-- hp: double (nullable = true)
##  |-- drat: double (nullable = true)
##  |-- wt: double (nullable = true)
##  |-- qsec: double (nullable = true)
##  |-- vs: double (nullable = true)
##  |-- am: double (nullable = true)
##  |-- gear: double (nullable = true)
##  |-- carb: double (nullable = true)

只需使用write.df / saveDF

问题是你不应该首先使用内部API。在初始版本中删除它的原因之一是不够强大,无法直接使用。更不用说它仍然不清楚将来是否会得到支持甚至可用。只是说...