这个代码我得到一个奇怪的错误。我正在尝试池化一个worker函数的实例,该函数是调用池的类的成员。虽然我怀疑这是否有效,但我不确定为什么会这样做的确切原因?运行此命令时抛出的错误是" PicklingError"。有人可以解释原因吗?
import multiprocessing
import time
class Pooler(multiprocessing.Process):
def __init__(self):
multiprocessing.Process.__init__(self)
def run(self):
pool = multiprocessing.Pool(10)
print "starting pool"
pool.map(self.worker, xrange(10), chunksize=10)
def worker(self, arg):
print "worker - arg - {}".format(arg)
if __name__ == '__main__':
jobs = []
for i in range(5):
proc = Pooler()
jobs.append(proc)
proc.start()
for j in jobs:
j.join()
print "...ending"
更新
我将代码更改为如下所示:
import multiprocessing
import time
class Pooler(multiprocessing.Process):
def __init__(self):
multiprocessing.Process.__init__(self)
def run(self):
pool = multiprocessing.Pool(1)
print "starting pool"
obj = Worker()
pool.map(obj.run, range(10), chunksize=1)
class Worker(object):
def __init__(self):
pass
def run(self, nums):
print "worker - arg - {}".format(nums)
if __name__ == '__main__':
jobs = []
for i in range(1):
proc = Pooler()
jobs.append(proc)
proc.start()
for j in jobs:
j.join()
print "...ending"
但我仍然收到以下错误:
starting pool
Process Pooler-1:
Traceback (most recent call last):
File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/multiprocessing/process.py", line 258, in _bootstrap
self.run()
File "pool_test.py", line 13, in run
pool.map(obj.run, range(10), chunksize=1)
File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/multiprocessing/pool.py", line 251, in map
return self.map_async(func, iterable, chunksize).get()
File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/multiprocessing/pool.py", line 567, in get
raise self._value
PicklingError: Can't pickle <type 'instancemethod'>: attribute lookup __builtin__.instancemethod failed
...ending
答案 0 :(得分:1)
答案很简单。 multiprocessing
使用pickle
序列化对象并在不同进程之间传递这些对象 - 并且由于错误状态,pickle
无法序列化instancemethod
。如果要序列化dill
(参见https://stackoverflow.com/a/21345273/2379433),则需要使用更好的序列化程序,例如instancemethod
。
那你对multiprocessing
怎么办?幸运的是,有一个名为multiprocessing
multiprocess
的分支使用dill
,如果您使用它,您的对象将序列化并且您的代码将起作用。这是一个单行更改,可以从解释器运行以及序列化python中的几乎所有对象。 (我上面发布的链接适用于pathos
和dill
,但pathos
建立在multiprocess
之上,因此它仍然非常相关。)
>>> import multiprocess as multiprocessing
>>> import time
>>> class Pooler(multiprocessing.Process):
... def __init__(self):
... multiprocessing.Process.__init__(self)
... def run(self):
... pool = multiprocessing.Pool(1)
... print "starting pool"
... obj = Worker()
... pool.map(obj.run, range(10), chunksize=1)
...
>>> class Worker(object):
... def __init__(self):
... pass
... def run(self, nums):
... print "worker - arg - {}".format(nums)
...
>>> if __name__ == '__main__':
... jobs = []
... for i in range(1):
... proc = Pooler()
... jobs.append(proc)
... proc.start()
... for j in jobs:
... j.join()
... print "...ending"
...
starting pool
worker - arg - 0
worker - arg - 1
worker - arg - 2
worker - arg - 3
worker - arg - 4
worker - arg - 5
worker - arg - 6
worker - arg - 7
worker - arg - 8
worker - arg - 9
...ending
>>>