我有一个大型数据框,我在其中识别字符串中的模式然后将其提取出来。我提供了一个小子集来说明我的任务。我通过创建一个包含多个单词的TermDocumentMatrix来生成模式。我使用stri_extract和stringi和stringr包中的str_replace这些模式在'punct_prob'数据框中搜索。
我的问题是我需要在'punct_prob $ description'中保持标点符号以保持每个字符串中的字面含义。例如,我不能让2.35毫米变成235毫米。我使用的TermDocumentMatrix程序正在删除标点符号(或至少是句点),因此我的模式搜索功能无法与它们匹配。
简而言之......在生成TDM时如何保持标点符号?我尝试在TermDocumentMatrix控件参数中包含removePunctuation = FALSE,但没有成功。
library(tm)
punct_prob = data.frame(description = tolower(c("CONTRA ANGLE HEAD 2:1 FOR 2.35mm BUR",
"TITANIUM LINE MINI P.B F.O. TRIP SPRAY",
"TITANIUM LINE POWER P. B F.O. TRIP SPR",
"MEDESY SPECIAL ITEM")))
punct_prob$description = as.character(punct_prob$description)
# a control for the number of words in phrases
max_ngram = max(sapply(strsplit(punct_prob$description, " "), length))
#set up ngrams and tdm
BigramTokenizer <- function(x) {RWeka::NGramTokenizer(x, RWeka::Weka_control(min = max_ngram, max = max_ngram))}
punct_prob_corpus = Corpus(VectorSource(punct_prob$description))
punct_prob_tdm <- TermDocumentMatrix(punct_prob_corpus, control = list(tokenize = BigramTokenizer, removePunctuation=FALSE))
inspect(punct_prob_tdm)
检查结果 - 没有标点......
Docs
Terms 1 2 3 4
angle head 2 1 for 2 35mm bur 1 0 0 0
contra angle head 2 1 for 2 35mm 1 0 0 0
line mini p b f o trip spray 0 1 0 0
line power p b f o trip spr 0 0 1 0
titanium line mini p b f o trip 0 1 0 0
titanium line power p b f o trip 0 0 1 0
感谢您提前提供任何帮助:)
答案 0 :(得分:3)
问题不在于termdocumentmatrix,而是基于RWEKA的ngram tokenizer。 Rweka在进行标记化时删除了标点符号。
如果使用nlp tokenizer,它会保留标点符号。请参阅下面的代码。
P.S。我删除了第3个文本行中的一个空格,因此P. B.是P.B.就像它在第2行。
library(tm)
punct_prob = data.frame(description = tolower(c("CONTRA ANGLE HEAD 2:1 FOR 2.35mm BUR",
"TITANIUM LINE MINI P.B F.O. TRIP SPRAY",
"TITANIUM LINE POWER P.B F.O. TRIP SPR",
"MEDESY SPECIAL ITEM")))
punct_prob$description = as.character(punct_prob$description)
max_ngram = max(sapply(strsplit(punct_prob$description, " "), length))
punct_prob_corpus = Corpus(VectorSource(punct_prob$description))
NLPBigramTokenizer <- function(x) {
unlist(lapply(ngrams(words(x), max_ngram), paste, collapse = " "), use.names = FALSE)
}
punct_prob_tdm <- TermDocumentMatrix(punct_prob_corpus, control = list(tokenize = NLPBigramTokenizer))
inspect(punct_prob_tdm)
<<TermDocumentMatrix (terms: 3, documents: 4)>>
Non-/sparse entries: 3/9
Sparsity : 75%
Maximal term length: 38
Weighting : term frequency (tf)
Docs
Terms 1 2 3 4
contra angle head 2:1 for 2.35mm bur 1 0 0 0
titanium line mini p.b f.o. trip spray 0 1 0 0
titanium line power p.b f.o. trip spr 0 0 1 0
答案 1 :(得分:1)
quanteda 包非常智能,无需将字内标点符号视为“标点符号”。这使得构建矩阵非常容易:
txt <- c("CONTRA ANGLE HEAD 2:1 FOR 2.35mm BUR",
"TITANIUM LINE MINI P.B F.O. TRIP SPRAY",
"TITANIUM LINE POWER P.B F.O. TRIP SPR",
"MEDESY SPECIAL ITEM")
require(quanteda)
myDfm <- dfm(txt, ngrams = 6:8, concatenator = " ")
t(myDfm)
# docs
# features text1 text2 text3 text4
# contra angle head for 2.35mm bur 1 0 0 0
# titanium line mini p.b f.o trip 0 1 0 0
# line mini p.b f.o trip spray 0 1 0 0
# titanium line mini p.b f.o trip spray 0 1 0 0
# titanium line power p.b f.o trip 0 0 1 0
# line power p.b f.o trip spr 0 0 1 0
# titanium line power p.b f.o trip spr 0 0 1 0
如果你想保留“标点符号”,它会在结束一个术语时被标记为一个单独的标记:
myDfm2 <- dfm(txt, ngrams = 8, concatenator = " ", removePunct = FALSE)
t(myDfm2)
# docs
# features text1 text2 text3 text4
# titanium line mini p.b f.o . trip spray 0 1 0 0
# titanium line power p.b f.o . trip spr 0 0 1 0
请注意,ngrams
参数是完全灵活的,可以采用ngram大小的向量,如第一个示例中ngrams = 6:8
表示它应该形成6,7和8-克。