我绘制度数分布图并在其上拟合幂律,但是我不想拟合幂律,而是想在图的中点绘制平滑曲线。所以我需要帮助,如何在度数分布上拟合平滑的曲线?我的代码和图表如下。 代码:
rm(list=ls())
options(max.print = 10000000)
library(igraph)
Binr<- read.delim("E:/M.Tech 3rd sem/Thesis/Dataset/BINARY_PROTEIN_PROTEIN_INTERACTIONS.txt", na.strings="-",
header=F, comment.char = "" , fill = TRUE , sep = "\t" )
Binrppi <- Binr[complete.cases(Binr),]
d_f <- data.frame(Binrppi$V1 , Binrppi$V4);d_f
lvl <- d_f[as.character(d_f[,1])!= as.character(d_f[,2]),];lvl
g <- graph.data.frame(lvl,directed = FALSE)
d <- degree(g)
degree <- sort(d, decreasing = TRUE)
dd <- degree.distribution(g, cumulative = FALSE)
degree <- 1:max(d);degree
probability <- dd[-1] ; probability
nonzero.position = which(probability != 0)
probability = probability[nonzero.position]
degree = degree[nonzero.position];degree
reg = lm(log(probability) ~ log(degree)) ; reg
cozf = coef(reg);cozf
summary(reg)
alpha = -cozf[[2]]; alpha
R.square = summary(reg)$r.squared
R.square
lo <- loess(degree ~ probability );lo
plot(probability ~ degree, log = "xy", xlab = "Degree", ylab = "Probability (log)",
col = "blue", main = "Degree Distribution")
xl <- seq(min(probability),max(probability), (max(probability) - min(probability))/1000); xl
lines(xl, predict(lo,xl), col='red', lwd=2)
在这个情节中,我想要一个中间点的平滑曲线,如从2度到50度 我的数据集太大了,这就是我无法在此处上传的原因。其PPI数据集。
感谢您提前提供任何帮助。
您好,我在这里发布了一小部分数据集。发布前100个交互。 Binrppi.V1 Binrppi.V4 2 ITGA7 CHRNA1 3 PPP1R9A ACTG1 4 SRGN CD44 5 GRB7 ERBB2 6 PAK1 ERBB2 7 DLG4 ERBB2 8 PIK3R2 ERBB2 9 PTPN18 ERBB2 10 ERBB2IP ERBB2 11 SMURF2 ARHGAP5 12 NF2 ERBB2 13 CD82 ERBB2 14 ERRFI1 ERBB2 15 MMP7 CD44 16 TOB1 ERBB2 17 MUC4 ERBB2 18 PICK1 ERBB2 19 SMURF2 TXNIP 20 DDX20 ETV3 21 TLE1 FOXG1 22 TLE3 FOXG1 23 HDAC1 FOXG1 24 SMAD1 FOXG1 25 KDM5B FOXG1 26 CD4 CD44 27 SMURF2 DAB2 28 CBL VAV1 29 PLCG1 VAV1 30 PRLR VAV1 31 TYK2 VAV1 32 SMURF2 DGCR2 33 MAPK1 VAV1 34 VAV1 RHOG 35 HRAS VAV1 36 BTK VAV1 37 TGFBR1 CD44 38 SYK VAV1 39 SHB VAV1 40 PRKCQ VAV1 41 TEC VAV1 42 IL6ST VAV1 43 HNRNPK VAV1 44 SLA VAV1 45 PTK2B VAV1 46 EZH2 VAV1 47 LCP2 VAV1 48 TGFBR2 CD44 49 ZYX VAV1 50 SH3BP2 VAV1 51 SIAH2 VAV1 52拉特VAV1 53 ARHGDIB VAV1 54 SOCS1 VAV1 55 AOC3 VAV1 56 NEK3 VAV1 57 CBLB VAV1 58 BLNK VAV1 59 VAV2 CD44 60 RACGAP1 VAV1 61 PAG1 VAV1 62 DOCK2 VAV1 63 SMURF2 FAM175B 64 SMURF2 ACBD3 66 PECAM1 YES1 67 CD36 YES1 68 RPL10 YES1 69 MST1R YES1 70 ERBB4 CD44 71 TYRO3 YES1 72 ADAM12 YES1 73 NPHS1 YES1 74 OCLN YES1 75 DLG4 YES1 76 CD2AP YES1 77 TRPV4 YES1 78 SMURF2 SF3A2 79 GP6 YES1 80 TP53BP2 YES1 81 TIAM1 CD44 82 SP1 REL 83 ELF1 REL 84 SMURF2 ACOX3 85 SMURF2 RNF111 86 NKRF REL 87 TBP REL 88 SMURF2 TMEM139 89 SMURF2 LAPTM5 90 MAPK8 REL 91 SMURF2 SNRNP70 92 DMP1 CD44 93 PPP4C REL 94 NUP155 ZFYVE9 95 SUMF2 ZFYVE9 96 ETS2 ZFYVE9 97 SMAD7 ZNF107 98 SMAD7 ZBTB44 99 SMAD7 TTF2 100 HSPA8 REL 101 SMAD7 MYOD1 102 GTF2B REL