在Spark中重新组合/连接DataFrame行

时间:2015-11-25 20:07:39

标签: scala apache-spark dataframe apache-spark-sql apache-spark-ml

我有一个如下所示的DataFrame:

scala> data.show
+-----+---+---------+
|label| id| features|
+-----+---+---------+
|  1.0|  1|[1.0,2.0]|
|  0.0|  2|[5.0,6.0]|
|  1.0|  1|[3.0,4.0]|
|  0.0|  2|[7.0,8.0]|
+-----+---+---------+

我想基于“id”重新组合功能,以便我可以得到以下内容:

scala> data.show
+---------+---+-----------------+
|    label| id| features        |
+---------+---+-----------------+
|  1.0,1.0|  1|[1.0,2.0,3.0,4.0]|
|  0.0,0.0|  2|[5.0,6.0,7.8,8.0]|
+---------+---+-----------------+

这是我用来生成上述DataFrame的代码

val rdd = sc.parallelize(List((1.0, 1, Vectors.dense(1.0, 2.0)), (0.0, 2, Vectors.dense(5.0, 6.0)), (1.0, 1, Vectors.dense(3.0, 4.0)), (0.0, 2, Vectors.dense(7.0, 8.0))))
val data = rdd.toDF("label", "id", "features")

我一直在尝试使用RDD和DataFrames进行不同的操作。到目前为止,最“有希望”的方法是根据“id”进行过滤

data.filter($"id".equalTo(1))

+-----+---+---------+
|label| id| features|
+-----+---+---------+
|  1.0|  1|[1.0,2.0]|
|  1.0|  1|[3.0,4.0]|
+-----+---+---------+

但我现在有两个瓶颈:

1)如何自动化“id”可能具有的所有不同值的过滤?

以下内容会产生错误:

data.select("id").distinct.foreach(x => data.filter($"id".equalTo(x)))

2)如何连接给定“id”的常见“特征”。没有尝试过多,因为我仍然坚持1)

任何建议都非常受欢迎

注意:为了澄清,“label”对于每次出现的“id”始终是相同的。对不起,我的任务的简单扩展也是对“标签”(更新示例)进行分组

1 个答案:

答案 0 :(得分:6)

我认为没有有效的方法来实现您想要的,而额外的订单要求使得情况不会变得更好。我能想到的最简洁的方法是groupByKey这样:

import org.apache.spark.mllib.linalg.{Vectors, Vector}
import org.apache.spark.sql.functions.monotonicallyIncreasingId
import org.apache.spark.sql.Row
import org.apache.spark.rdd.RDD


val pairs: RDD[((Double, Int), (Long, Vector))] = data
  // Add row identifiers so we can keep desired order
  .withColumn("uid", monotonicallyIncreasingId)
  // Create PairwiseRDD where (label, id) is a key
  // and (row-id, vector is a value)
  .map{case Row(label: Double, id: Int, v: Vector, uid: Long) => 
    ((label, id), (uid, v))}

val rows = pairs.groupByKey.mapValues(xs => {
  val vs = xs
    .toArray
    .sortBy(_._1) // Sort by row id to keep order
    .flatMap(_._2.toDense.values) // flatmap vector values

  Vectors.dense(vs) // return concatenated vectors 

}).map{case ((label, id), v) => (label, id, v)} // Reshape

val grouped = rows.toDF("label", "id", "features")

grouped.show

// +-----+---+-----------------+
// |label| id|         features|
// +-----+---+-----------------+
// |  0.0|  2|[5.0,6.0,7.0,8.0]|
// |  1.0|  1|[1.0,2.0,3.0,4.0]|
// +-----+---+-----------------+

也可以使用类似于我为SPARK SQL replacement for mysql GROUP_CONCAT aggregate function提出的UDAF,但效率甚至低于此。