我有代码在一组数据工作中生成一组直方图,并且我已经获得了为每个直方图工作生成一组汇总表的代码,但我无法结合直方图和表格。
在示例案例中使用iris数据:
#Generate list of data to be create ggplot histogram
iris.hp<-ggplot(data=iris, aes(x=Sepal.Length)) +
geom_histogram(binwidth =.25,origin=-0.125,
right = TRUE,col="white", fill="steelblue4",alpha=1) +
labs(title = "Iris Sepal Length")+
labs(x="Sepal Length", y="Count")
iris.hp
iris.list<-by(data = iris, INDICES = iris$Species, simplify = TRUE,
FUN = function(x) {iris.hp %+% x + ggtitle(unique(x$Species))})
multi.plot<-marrangeGrob(grobs = iris.list, nrow=1,ncol=1,
top = quote(paste(iris$labels$title,'\nPage',g,'of',pages)))
#Generate list of data to create summary statistics table
sum.str<-aggregate(Sepal.Length~Species,iris,summary)
spec<-sum.str[,1]
spec.stats<-sum.str[,2]
sum.data<-data.frame(spec,spec.stats)
sum.table<-tableGrob(sum.data.frame)
colnames(sum.data)<-c("species","sep.len.min","sep.len.1stQ","sep.len.med",
"sep.len.mean","sep.len.3rdQ","sep.len.max")
table.list<-by(data = sum.data, INDICES = sum.data$"species",
simplify = TRUE, FUN = function(x) {tableGrob(x,theme=tt3)})
multi.plot.table<-marrangeGrob(grobs = table.list,nrow=1,ncol=1,
top = quote(paste(iris$labels$Species,'\nPage', g, 'of',pages)))
#attempt to combine the iris.list and table.list Grobs
# updated code based on @Heroka commment
multi.plot.test<-marrangeGrob(grobs=c(iris.list,table.list),
nrow=1,ncol=2, top = quote(paste(occ$labels$title,'\nPage', g, 'of',pages)))
我可以使用annotation_custom
和grid.arrange
+ arrangeGrob
为单个实例执行此操作,我尝试使用marrangeGrob
函数,但没有运气。只需将iris.list
和table.list
同时放入marrangeGrob
就会引发错误:
Error in gList(list(setosa = list(data = list(Sepal.Length = c(5.1, 4.9, : only 'grobs' allowed in "gList"
更新:更改marrangeGrob(grobs = list() to grobs = c()
时出现错误,感谢@Heroka
任何人都有关于如何组合iris.list和table.list grobs的指针,并以直方图匹配相应的摘要统计表的方式对它们进行排序?我尝试使用gList
进行组合,但它在gList中返回了一个错误'only grobs',而且我也使用gTree进行了调整,但无济于事。
答案 0 :(得分:0)
好吧,我终于明白了,看起来很简单。为了将两组grob(虹膜直方图iris.list
和摘要统计表table.list
)组合/交错为glist
可用的单marrangeGrob
,您可以使用
marrangeGrob(grobs=(c(rbind(iris.list,table.list)))
最终结果是每种类型虹膜的单独直方图和汇总表:setosa,verginica和versicolor。
更新后的工作代码如下。
#Generate list of data to be create ggplot histogram
iris.hp<-ggplot(data=iris, aes(x=Sepal.Length)) +
geom_histogram(binwidth =.25,origin=-0.125,
right = TRUE,col="white", fill="steelblue4",alpha=1) +
labs(title = "Iris Sepal Length")+
labs(x="Sepal Length", y="Count")
#Plots histogram of full iris dataset
iris.hp
#Creates list of histogram plots for each iris using the base{by} function
iris.list<-by(data = iris, INDICES = iris$Species, simplify = TRUE,
FUN = function(x) {iris.hp %+% x + ggtitle(unique(x$Species))})
#Outputs a plot for each iris histogram
multi.plot<-marrangeGrob(grobs = iris.list, nrow=1,ncol=1,
top = quote(paste(iris$labels$title,'\nPage', g, 'of',pages)))
#Generate list of data to create summary statistics table
sum.str<-aggregate(Sepal.Length~Species,iris,summary)
spec<-sum.str[,1]
spec.stats<-sum.str[,2]
sum.data<-data.frame(spec,spec.stats)
sum.table<-tableGrob(sum.data)
colnames(sum.data)<-c("species","sep.len.min","sep.len.1stQ","sep.len.med",
"sep.len.mean","sep.len.3rdQ","sep.len.max")
#Creates list of summary table grobs for each iris
table.list<-by(data = sum.data, INDICES = sum.data$"species", simplify = TRUE,
FUN = function(x) {tableGrob(x,theme=tt3)})
#Outputs multiple summary tables for each iris
multi.plot.table<-marrangeGrob(grobs = table.list,nrow=1,ncol=1,
top = quote(paste(iris$labels$Species,'\nPage', g, 'of',pages)))
#Combined histogram and summary table across multiple plots
multi.plots<-marrangeGrob(grobs=(c(rbind(iris.list,table.list))),nrow=2, ncol=1,
top = quote(paste(occ$labels$title,'\nPage', g, 'of',pages)))