我有以下数据框$error_reporting
:
"E_ALL | E_STRICT"
我想实现类似以下的条形图
如果df
列中的标签不是 timestamp objectId result
0 2015-11-24 09:00:00 Stress 3
1 2015-11-24 09:00:00 Productivity 0
2 2015-11-24 09:00:00 Abilities 4
3 2015-11-24 09:00:00 Challenge 0
4 2015-11-24 10:00:00 Productivity 87
5 2015-11-24 10:00:00 Abilities 84
6 2015-11-24 10:00:00 Challenge 58
7 2015-11-24 10:00:00 Stress 25
8 2015-11-24 11:00:00 Productivity 93
9 2015-11-24 11:00:00 Abilities 93
10 2015-11-24 11:00:00 Challenge 93
11 2015-11-24 11:00:00 Stress 19
12 2015-11-24 12:00:00 Challenge 90
13 2015-11-24 12:00:00 Abilities 96
14 2015-11-24 12:00:00 Stress 94
15 2015-11-24 12:00:00 Productivity 88
16 2015-11-24 13:00:00 Productivity 12
17 2015-11-24 13:00:00 Challenge 17
18 2015-11-24 13:00:00 Abilities 89
19 2015-11-24 13:00:00 Stress 13
,则y轴应与列a,b,c,d
对应,而x轴应为列{{1}的分组值}}。
我尝试了几件事,但没有任何效果。这是最接近的,但ObjectID
方法不会通过参数进行任何自定义(例如result
无效)。
timestamp
还有其他想法吗?
答案 0 :(得分:3)
import seaborn as sns
In [36]:
df.timestamp = df.timestamp.factorize()[0]
In [39]:
df.objectId = df.objectId.map({'Stress' : 'a' , 'Productivity' : 'b' , 'Abilities' : 'c' , 'Challenge' : 'd'})
In [41]:
df
Out[41]:
timestamp objectId result
0 0 a 3
1 0 b 0
2 0 c 4
3 0 d 0
4 1 b 87
5 1 c 84
6 1 d 58
7 1 a 25
8 2 b 93
9 2 c 93
10 2 d 93
11 2 a 19
12 3 d 90
13 3 c 96
14 3 a 94
15 3 b 88
16 4 b 12
17 4 d 17
18 4 c 89
19 4 a 13
In [40]:
sns.barplot(x = 'timestamp' , y = 'result' , hue = 'objectId' , data = df );
答案 1 :(得分:1)
@NaderHisham的答案是一个非常简单的解决方案!
但仅作为参考,如果由于某种原因不能使用seaborn,这是一个纯粹的pandas / matplotlib解决方案:
您需要重塑数据,因此不同的objectIds成为列:
In [20]: df.set_index(['timestamp', 'objectId'])['result'].unstack()
Out[20]:
objectId Abilities Challenge Productivity Stress
timestamp
09:00:00 4 0 0 3
10:00:00 84 58 87 25
11:00:00 93 93 93 19
12:00:00 96 90 88 94
13:00:00 89 17 12 13
如果你制作一个条形图,你会得到所需的结果:
In [24]: df.set_index(['timestamp', 'objectId'])['result'].unstack().plot(kind='bar')
Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0xc44a5c0>