使用rcaller读取结果时更改预测值

时间:2015-11-22 19:32:22

标签: java r time-series forecasting rcaller

我正在尝试使用rcaller通过R集成来预测java中的一些数据。类似于rcaller(https://github.com/jbytecode/rcaller/blob/master/RCaller/src/main/java/examples/ForecastExample.java

中的代码示例

从r读取结果并打印上部,下部,拟合和平均值(我使用tt $ mean添加)。以下是示例值:

R命令和值:

  > lst<-forecast(arfima(ma(meta1, order=7)),h=10)
> lst$mean
Time Series:
Start = 105 
End = 114 
Frequency = 1 
 [1] 144.3219 137.5436 131.7407 126.7097 122.3315 118.5163 115.1900 112.2892
 [9] 109.7589 107.5511
> lst
    Point Forecast     Lo 80    Hi 80     Lo 95    Hi 95
105       144.3219 122.37756 166.2663 110.76091 177.8830
106       137.5436 107.51843 167.5687  91.62408 183.4631
107       131.7407  96.49639 166.9850  77.83919 185.6422
108       126.7097  87.82406 165.5954  67.23922 186.1803
109       122.3315  80.81365 163.8493  58.83544 185.8275
110       118.5163  75.05634 161.9762  52.05005 184.9825
111       115.1900  70.27757 160.1024  46.50237 183.8776
112       112.2892  66.27976 158.2986  41.92383 182.6546
113       109.7589  62.91454 156.6032  38.11664 181.4011
114       107.5511  60.06726 155.0349  34.93086 180.1713

Java xml结果:

   Available results from ts() object:
<?xml version="1.0"?>
<root>
<variable name="upper" type="numeric" n="10"  m="2"><v>0.0415022799211068</v><v>0.0591474942854589</v><v>0.0614232201188155</v><v>0.0614270046751282</v><v>0.0614250367195549</v><v>0.0614268906025606</v><v>0.0614267754071175</v><v>0.061426764426567</v><v>0.0614267887421146</v><v>0.0614268038998227</v><v>0.0630097192924167</v><v>0.089534103213086</v><v>0.0928426957181002</v><v>0.0928794445803825</v><v>0.0928775168539632</v><v>0.0928794017875694</v><v>0.0928792867199118</v><v>0.0928792757404699</v><v>0.0928793000618265</v><v>0.0928793152218208</v></variable>
<variable name="lower" type="numeric" n="10"  m="2"><v>-0.0397547602668397</v><v>-0.0556558470226343</v><v>-0.0572823843642995</v><v>-0.057403141920541</v><v>-0.0574052618654761</v><v>-0.0574035252944317</v><v>-0.0574036409726598</v><v>-0.057403651957399</v><v>-0.0574036276637981</v><v>-0.0574036125147275</v><v>-0.0612621996381496</v><v>-0.0860424559502614</v><v>-0.0887018599635842</v><v>-0.0888555818257953</v><v>-0.0888577419998844</v><v>-0.0888560364794405</v><v>-0.0888561522854541</v><v>-0.088856163271302</v><v>-0.08885613898351</v><v>-0.0888561238367256</v></variable>
<variable name="mean" type="numeric" n="10"  m="1"><v>0.000873759827133541</v><v>0.00174582363141232</v><v>0.00207041787725797</v><v>0.00201193137729362</v><v>0.0020098874270394</v><v>0.00201168265406443</v><v>0.00201156721722883</v><v>0.00201155623458396</v><v>0.00201158053915825</v><v>0.00201159569254763</v></variable>
</root>

结果是否缩放? 如果是这样如何获得实际数据?

0 个答案:

没有答案