我是python的新手。我之前只有VBA中的代码。最近开始使用python进行数据挖掘,但是使用python时遇到了麻烦
我无法使用onehotencoder正确转换我的catergory功能,这是我的代码
from __future__ import print_function
import os import subprocess from sklearn.preprocessing import OneHotEncoder
from sklearn import preprocessing import csv
import pandas as pd import numpy as np
from sklearn.tree import DecisionTreeClassifier, export_graphviz
datapoint = []
with open('raw2.csv', 'rb') as csvfile:
spamreader = csv.reader(csvfile, delimiter=',')
for row in spamreader: # Reading each row
data_point = []
for column in row: # Reading each column of the row
data_point.append((column))
datapoint.append(data_point)
datapoint = np.array(datapoint)
print(datapoint)
enc = preprocessing.OneHotEncoder()
enc.fit(datapoint)
enc.transform(datapoint).toarray()
features = list(df.columns[1:8])
print("* features:", features, sep="\n")
"#fit the decision tree"
y = df[,0]
X = df[features]
dt = DecisionTreeClassifier(min_samples_split=5, random_state=51)
dt.fit(X, y)
""produce graphic visualization""
def visualize_tree(tree, feature_names):
"""Create tree png using graphviz.
Args
----
tree -- scikit-learn DecsisionTree.
feature_names -- list of feature names.
"""
with open("dt.dot", 'w') as f:
export_graphviz(tree, out_file=f,
feature_names=feature_names)
command = ["dot", "-Tpng", "dt.dot", "-o", "dt.png"]
try:
subprocess.check_call(command)
except:
exit("Could not run dot, ie graphviz, to "
"produce visualization")
visualize_tree(dt, features)
这是我的第一个数据集的样本
['Tobermory' 'Car' '2-3hr' 'Fall' '<$100' '3 days' 'Male' '18 - 23']
这是我遇到的错误
ValueError Traceback (most recent call
last) <ipython-input-13-0bb2597d0276> in <module>()
25 enc = preprocessing.OneHotEncoder()
---> 26 enc.fit(datapoint)
27 enc.transform(datapoint).toarray()
ValueError: invalid literal for int() with base 10: 'Tobermory'
答案 0 :(得分:1)
我相信你正在寻找public static string Fibonacci(int n)
{
if (n < 2)
return "1";
int[] numbers = new int[n];
numbers[0]=0;
numbers[1]=1;
for (int i = 2; i < n; i++)
{
numbers[i] = numbers[i - 1] + numbers[i - 2];
}
return string.Join(" ", numbers);
}
。
sklearn.preprocessing.LabelBinarizer
取整数并从中创建虚拟变量。
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html