我处理来自扫描目录的原始文本数据。 我想将我的字符串向量转换为data.frame对象。 我的向量包含按字母顺序排列的执行每项或多项工作的人员列表 - 人名是大写的 - 每件作品都有编号 - 编号工作是连续的。
AADFDS
1 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
AB
2 Nulla sollicitudin elit in purus egestas, in placerat velit iaculis.
BBDDED
3 Nunc et eros eget turpis sollicitudin mollis id et mi.
4 Mauris condimentum velit eu consequat feugiat.
5 Suspendisse sit amet metus vitae est eleifend tincidunt.
CCDDFSF
6 Sed cursus augue in tempus scelerisque.
7 in commodo enim in laoreet gravida.
预期结果1
Author Work
AA DFDS 1 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
AB 2 Nulla sollicitudin elit in purus egestas, in placerat velit
BBDDED 3 Nunc et eros eget turpis sollicitudin mollis id et
BBDDED 4 Mauris condimentum velit eu consequat feugiat.
BBDDED 5 Suspendisse sit amet metus vitae est eleifend tincidunt.
CCDDFSF 6 Sed cursus augue in tempus scelerisque.
CCDDFSF 7 in commodo enim in laoreet gravida.
预期结果2,每个作品都有一列
Author | Work1 | Work2 | Work3 | Work(x)
将数据导入R:
readlines ("clipboard", encoding = " latin1 ")
我能够识别包含不同正则表达式的大写字母的艺术家姓名的行
e.g。
^[A-ZÁÀÂÄÃÅÇÉÈÊËÍÌÎÏÑÓÒÔÖÕÚÙÛÜÝYÆO][A-ZÁÀÂÄÃÅÇÉÈÊËÍÌÎÏÑÓÒÔÖÕÚÙÛÜÝYÆO |']
我能识别包括艺术品在内的一行
^[0-9]+[\s]
非常感谢任何帮助。
答案 0 :(得分:3)
这样可以为您的样本数据提供正确的结果。
txt="
AADFDS
1 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
AB
2 Nulla sollicitudin elit in purus egestas, in placerat velit iaculis.
BBDDED
3 Nunc et eros eget turpis sollicitudin mollis id et mi.
4 Mauris condimentum velit eu consequat feugiat.
5 Suspendisse sit amet metus vitae est eleifend tincidunt.
CCDDFSF
6 Sed cursus augue in tempus scelerisque.
7 in commodo enim in laoreet gravida."
last_author=""
author_count=0
#the first scan splits the data by line, i.e., sep="\n"
#then for each line, we split by whitespace, i.e., sep=" "
#if the first element is numeric we increase the
#respective author's work counter "author_count" and
#we return the the work in a data.frame
#if the first element is non-numeric, we have
#encountered a new author
#we store the new author name in "last_author"
#(and remove trailing whitespaces at the end)
result1=do.call("rbind",
lapply(as.list(scan(text=txt,
what="character",
sep="\n",
quiet=TRUE)),
function(x) {
tmp=scan(text=x,what="character",sep=" ",quiet=TRUE)
if (grepl("[0-9]",tmp[1])) {
author_count<<-author_count+1
data.frame(Author=last_author,N=author_count,Work=x)
} else {
last_author<<-gsub("\\s*$","",x)
author_count<<-0
NULL
}}))
#we pivot the data; rows correspond to authors, columns to works
result2=reshape2::dcast(result1,Author~N,value.var = "Work")
#just renaming the columns
colnames(result2)[-1]=paste0("Work",1:(ncol(result2)-1))
result2
答案 1 :(得分:2)
toydata<- readLines("clipboard")
#find lines beginning with any number; flags lines with authors
work_id <- grepl("^[0-9]" , toydata)
#rle finds subsequent runs of an element within a vector
RLE <- rle(work_id)
#work_id filters out the lines with author names
#rep(toydata[!work_id],RLE$lengths[RLE$values]) repeats the ...
#... author name (times = number of author's works)
df_toydata <- data.frame(work = toydata[work_id],
Author = rep(toydata[!work_id],
RLE$lengths[RLE$values]),
stringsAsFactors=FALSE)
#we have to order the data.frame by author just in case
#some author appears again
df_toydata=df_toydata[order(df_toydata$Author),]
#we can now add a column with a numbering of each author's works
df_toydata$N=sequence(rle(df_toydata$Author)$lengths)
#format long to large
#we pivot the data; rows correspond to authors, columns to works
df2=reshape2::dcast(df_toydata,Author~N,value.var = "work")
colnames(df2)[-1]=paste0("Work",1:(ncol(df2)-1))