pyspark:重新分区后出现“太多值”错误

时间:2015-11-20 22:54:53

标签: python apache-spark apache-spark-sql pyspark rdd

我有一个DataFrame(转换为RDD)并希望重新分区,以便每个键(第一列)都有自己的分区。这就是我所做的:

# Repartition to # key partitions and map each row to a partition given their key rank
my_rdd = df.rdd.partitionBy(len(keys), lambda row: int(row[0]))

但是,当我尝试将其映射回DataFrame或保存时,我收到此错误:

Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "spark-1.5.1-bin-hadoop2.6/python/lib/pyspark.zip/pyspark/worker.py", line 111, in main
        process()
      File "spark-1.5.1-bin-hadoop2.6/python/lib/pyspark.zip/pyspark/worker.py",     line 106, in process
serializer.dump_stream(func(split_index, iterator), outfile)
  File "spark-1.5.1-bin-hadoop2.6/python/lib/pyspark.zip/pyspark/serializers.py", line 133, in dump_stream
    for obj in iterator:
  File "spark-1.5.1-bin-hadoop2.6/python/pyspark/rdd.py", line 1703, in add_shuffle_key
    for k, v in iterator:
ValueError: too many values to unpack

        at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRDD.scala:166)
        at org.apache.spark.api.python.PythonRunner$$anon$1.<init>(PythonRDD.scala:207)
        at org.apache.spark.api.python.PythonRunner.compute(PythonRDD.scala:125)
        at org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:70)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at org.apache.spark.api.python.PairwiseRDD.compute(PythonRDD.scala:342)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
        at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
        at org.apache.spark.scheduler.Task.run(Task.scala:88)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
           at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        ... 1 more

更多的测试显示,即使这会导致同样的错误:     my_rdd = df.rdd.partitionBy(x)#x =可以是5,100等

你们有没有遇到过这个。如果是这样,你是如何解决的?

1 个答案:

答案 0 :(得分:2)

if (rank == 0) { for (i = 1; i < size; i++) MPI_Send(&(Csend[0][0]), N*dim, MPI_FLOAT, i, 10+i, MPI_COMM_WORLD); } if (rank == i) { MPI_Recv(&(Crecv[0][0]), N*dim, MPI_FLOAT, 0, 10+i, MPI_COMM_WORLD, &status); } 需要一个partitionBy,它在Python中相当于长度为2的元组(列表)的PairwiseRDD,其中第一个元素是键,第二个元素是值。 / p>

RDD获取密钥并将其映射到分区号。当您在partitionFunc上使用它时,它会尝试将行解压缩为一个值并失败:

RDD[Row]

即使你提供了正确的数据,也可以这样做:

from pyspark.sql import Row

row = Row(1, 2, 3)
k, v = row

## Traceback (most recent call last):
##   ...
## ValueError: too many values to unpack (expected 2)

它真的没有意义。在my_rdd = (df.rdd.map(lambda row: (int(row[0]), row)).partitionBy(len(keys)) 的情况下,分区不是特别有意义。有关详细信息,请参阅my answerHow to define partitioning of DataFrame?