VGG脸部描述符在python与caffe

时间:2015-11-20 14:01:04

标签: python matlab deep-learning caffe vgg-net

我想在python中实现VGG Face Descriptor。但我不断收到错误:

  

TypeError:只能连接列表(不是" numpy.ndarray")列表

我的代码:

import numpy as np
import cv2 
import caffe
img = cv2.imread("ak.png")
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
net = caffe.Net("VGG_FACE_deploy.prototxt","VGG_FACE.caffemodel",  caffe.TEST)
print net.forward(img)

你能帮助我吗?

更新1

此工作代码是matlab中的示例

%  Copyright (c) 2015, Omkar M. Parkhi
%  All rights reserved.
img = imread('ak.png');
img = single(img);

    Img = [129.1863,104.7624,93.5940] ;

img = cat(3,img(:,:,1)-averageImage(1),...
    img(:,:,2)-averageImage(2),...
    img(:,:,3)-averageImage(3));

img = img(:, :, [3, 2, 1]); % convert from RGB to BGR
img = permute(img, [2, 1, 3]); % permute width and height

model = 'VGG_FACE_16_deploy.prototxt';
weights = 'VGG_FACE.caffemodel';
caffe.set_mode_cpu();
net = caffe.Net(model, weights, 'test'); % create net and load weights

res = net.forward({img});
prob = res{1};

caffe_ft = net.blobs('fc7').get_data();

3 个答案:

答案 0 :(得分:7)

要使用python接口,您需要先转换输入图像,然后再将其输入网络

img = caffe.io.load_image( "ak.png" )
img = img[:,:,::-1]*255.0 # convert RGB->BGR
avg = np.array([93.5940, 104.7624, 129.1863])  # BGR mean values
img = img - avg # subtract mean (numpy takes care of dimensions :)

现在imgH - by - W - by-3 numpy数组。
Caffe希望其输入为4D:batch_index x频道x宽度x高度。
因此,您需要transpose输入并添加单个维度来表示" batch_index"领先维度

img = img.transpose((2,0,1)) 
img = img[None,:] # add singleton dimension

现在你可以运行正向传递

out = net.forward_all( data = img )

答案 1 :(得分:1)

OpenCV默认读入BGR并缩放为255格式,因此:

img = cv2.imread('ak.png')
avg = np.array([93.5940,104.7624,129.1863]) # BGR mean from VGG
img -= avg # subtract mean
img = img.transpose((2,0,1)) # to match image input dimension: 3x224x224
img = img[None,:] # add singleton dimension to match batch dimension
out = net.forward_all(data = img)

答案 2 :(得分:0)

尝试将单个元素列表传递给方法。

net.forward ([img])