我有以下图片掩码:
我想应用与cv::findContours
类似的内容,但该算法仅连接相同组中的连接点。我想用一些公差做这个,即我想在给定的半径公差范围内添加彼此靠近的像素:这类似于欧几里德距离层次聚类。
这是在OpenCV中实现的吗?或者有没有快速的方法来实现这个?
我想要的是类似的东西,
http://www.pointclouds.org/documentation/tutorials/cluster_extraction.php
应用于此蒙版的白色像素。
谢谢。
答案 0 :(得分:11)
您可以使用partition:
partition
将元素集拆分为等价类。您可以将等价类定义为给定欧几里德距离内的所有点(半径容差)
如果你有C ++ 11,你可以简单地使用lambda函数:
int th_distance = 18; // radius tolerance
int th2 = th_distance * th_distance; // squared radius tolerance
vector<int> labels;
int n_labels = partition(pts, labels, [th2](const Point& lhs, const Point& rhs) {
return ((lhs.x - rhs.x)*(lhs.x - rhs.x) + (lhs.y - rhs.y)*(lhs.y - rhs.y)) < th2;
});
否则,您可以构建一个仿函数(请参阅下面的代码中的详细信息)。
如果有适当的半径距离(我发现18张图片效果很好),我得到了:
完整代码:
#include <opencv2\opencv.hpp>
#include <vector>
#include <algorithm>
using namespace std;
using namespace cv;
struct EuclideanDistanceFunctor
{
int _dist2;
EuclideanDistanceFunctor(int dist) : _dist2(dist*dist) {}
bool operator()(const Point& lhs, const Point& rhs) const
{
return ((lhs.x - rhs.x)*(lhs.x - rhs.x) + (lhs.y - rhs.y)*(lhs.y - rhs.y)) < _dist2;
}
};
int main()
{
// Load the image (grayscale)
Mat1b img = imread("path_to_image", IMREAD_GRAYSCALE);
// Get all non black points
vector<Point> pts;
findNonZero(img, pts);
// Define the radius tolerance
int th_distance = 18; // radius tolerance
// Apply partition
// All pixels within the radius tolerance distance will belong to the same class (same label)
vector<int> labels;
// With functor
//int n_labels = partition(pts, labels, EuclideanDistanceFunctor(th_distance));
// With lambda function (require C++11)
int th2 = th_distance * th_distance;
int n_labels = partition(pts, labels, [th2](const Point& lhs, const Point& rhs) {
return ((lhs.x - rhs.x)*(lhs.x - rhs.x) + (lhs.y - rhs.y)*(lhs.y - rhs.y)) < th2;
});
// You can save all points in the same class in a vector (one for each class), just like findContours
vector<vector<Point>> contours(n_labels);
for (int i = 0; i < pts.size(); ++i)
{
contours[labels[i]].push_back(pts[i]);
}
// Draw results
// Build a vector of random color, one for each class (label)
vector<Vec3b> colors;
for (int i = 0; i < n_labels; ++i)
{
colors.push_back(Vec3b(rand() & 255, rand() & 255, rand() & 255));
}
// Draw the labels
Mat3b lbl(img.rows, img.cols, Vec3b(0, 0, 0));
for (int i = 0; i < pts.size(); ++i)
{
lbl(pts[i]) = colors[labels[i]];
}
imshow("Labels", lbl);
waitKey();
return 0;
}
答案 1 :(得分:2)
我建议使用DBSCAN算法。这正是你要找的。使用简单的欧几里德距离甚至曼哈顿距离可能会更好。 输入是所有白点(阈值编辑)。输出是一组点(您的连接组件)
如您所见,只是真正连接的点被视为一个群集。
此结果是使用standerad DBSCAN算法获得的, EPS = 3 (静态无需调整) MinPoints = 1 (静态)和曼哈顿距离强>