我正在使用Spark数据框,它可以从三种不同的模式版本之一加载数据:
// Original
{ "A": {"B": 1 } }
// Addition "C"
{ "A": {"B": 1 }, "C": 2 }
// Additional "A.D"
{ "A": {"B": 1, "D": 3 }, "C": 2 }
我可以通过检查架构是否包含字段“C”以及是否不向数据帧添加新列来处理附加的“C”。但是我无法弄清楚如何为子对象创建一个字段。
public void evolvingSchema() {
String versionOne = "{ \"A\": {\"B\": 1 } }";
String versionTwo = "{ \"A\": {\"B\": 1 }, \"C\": 2 }";
String versionThree = "{ \"A\": {\"B\": 1, \"D\": 3 }, \"C\": 2 }";
process(spark.getContext(), "1", versionOne);
process(spark.getContext(), "2", versionTwo);
process(spark.getContext(), "2", versionThree);
}
private static void process(JavaSparkContext sc, String version, String data) {
SQLContext sqlContext = new SQLContext(sc);
DataFrame df = sqlContext.read().json(sc.parallelize(Arrays.asList(data)));
if(!Arrays.asList(df.schema().fieldNames()).contains("C")) {
df = df.withColumn("C", org.apache.spark.sql.functions.lit(null));
}
// Not sure what to put here. The fieldNames does not contain the "A.D"
try {
df.select("C").collect();
} catch(Exception e) {
System.out.println("Failed to C for " + version);
}
try {
df.select("A.D").collect();
} catch(Exception e) {
System.out.println("Failed to A.D for " + version);
}
}
答案 0 :(得分:3)
zero323回答了这个问题,但是在Scala中。这与Java相同。
public void evolvingSchema() {
String versionOne = "{ \"A\": {\"B\": 1 } }";
String versionTwo = "{ \"A\": {\"B\": 1 }, \"C\": 2 }";
String versionThree = "{ \"A\": {\"B\": 1, \"D\": 3 }, \"C\": 2 }";
process(spark.getContext(), "1", versionOne);
process(spark.getContext(), "2", versionTwo);
process(spark.getContext(), "2", versionThree);
}
private static void process(JavaSparkContext sc, String version, String data) {
StructType schema = DataTypes.createStructType(Arrays.asList(
DataTypes.createStructField("A",
DataTypes.createStructType(Arrays.asList(
DataTypes.createStructField("B", DataTypes.LongType, true),
DataTypes.createStructField("D", DataTypes.LongType, true))), true),
DataTypes.createStructField("C", DataTypes.LongType, true)));
SQLContext sqlContext = new SQLContext(sc);
DataFrame df = sqlContext.read().schema(schema).json(sc.parallelize(Arrays.asList(data)));
try {
df.select("C").collect();
} catch(Exception e) {
System.out.println("Failed to C for " + version);
}
try {
df.select("A.D").collect();
} catch(Exception e) {
System.out.println("Failed to A.D for " + version);
}
}