我正在尝试将维度比例附加到我想用python存储在hdf5文件中的数据集中,但在设置后尝试打印属性时会出现错误。相关的代码段如下:
import h5py
import numpy as np
# create data and x-axis
my_data = np.random.randint(10, size=(100, 200))
x_axis = np.linspace(0, 1, 100)
h5f = h5.File('my_file.h5','w')
h5f.create_dataset( 'data_1', data=my_data )
h5f['data_1'].dims[0].label = 'm'
h5f['data_1'].dims.create_scale( h5f['x_axis'], 'x' )
# the following line is creating the problems
h5f['data_1'].dims[0].attach_scale( h5f['x_axis'] )
# this is where the crash happens but only if the above line is included
for ii in h5f['data_1'].attrs.items():
print ii
h5f.close()
命令print(h5.version.info)
打印以下输出:
Summary of the h5py configuration
---------------------------------
h5py 2.2.1
HDF5 1.8.11
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
[GCC 4.8.2]
sys.platform linux2
sys.maxsize 9223372036854775807
numpy 1.8.2
错误消息如下:
Traceback (most recent call last):
File "HDF_write_dimScales.py", line 16
for ii in h5f['data_1'].attrs.items():
File "/usr/lib/python2.7/dist-packages/h5py/_hl/base.py", line 347, in items
return [(x, self.get(x)) for x in self]
File "/usr/lib/python2.7/dist-packages/h5py/_hl/base.py", line 310, in get
return self[name]
File "/usr/lib/python2.7/dist-packages/h5py/_hl/attrs.py", line 55, in __getitem__
rtdt = readtime_dtype(attr.dtype, [])
File "h5a.pyx", line 318, in h5py.h5a.AttrID.dtype.__get__ (h5py/h5a.c:4285)
File "h5t.pyx", line 337, in h5py.h5t.TypeID.py_dtype (h5py/h5t.c:3892)
TypeError: No NumPy equivalent for TypeVlenID exists
感谢任何想法或提示。
答案 0 :(得分:1)
它适用于我h5py 2.5.0
的一些轻微调整。问题可能与您致电create_scale
时有关。使用h5py 2.5.0
,我在KeyError
电话中获得h5f['x_axis']
create_scale()
。为了让您的示例正常工作,我必须先显式创建x_axis
数据集。
import h5py
import numpy as np
# create data and x-axis
my_data = np.random.randint(10, size=(100, 200))
# Use a context manager to ensure h5f is closed
with h5py.File('my_file.h5','w') as h5f:
h5f.create_dataset( 'data_1', data=my_data )
# Create the x_axis dataset directly in the HDF5 file
h5f['x_axis'] = np.linspace(0, 1, 100)
h5f['data_1'].dims[0].label = 'm'
# Now we can create and attach the scale without problems
h5f['data_1'].dims.create_scale( h5f['x_axis'], 'x' )
h5f['data_1'].dims[0].attach_scale( h5f['x_axis'] )
for ii in h5f['data_1'].attrs.items():
print(ii)
# Output
#(u'DIMENSION_LABELS', array(['m', ''], dtype=object))
#(u'DIMENSION_LIST', array([array([<HDF5 object reference>], dtype=object),
# array([], dtype=object)], dtype=object))
如果您仍然遇到问题,可能需要升级到h5py 2.5.0
,这样可以更好地处理VLEN类型(尽管仍然不完美)。
答案 1 :(得分:0)
这只是一个猜测,但由于错误引用TypeVlenID
,它可能与vlen
中h5py
的不完整实现有关(特别是在我们的模块版本中) )。
Inexplicable behavior when using vlen with h5py
Writing to compound dataset with variable length string via h5py (HDF5)