如何编辑此代码以使最小堆成为可能?

时间:2015-11-19 00:56:03

标签: c++ c++11 data-structures heap priority-queue

我有一个Max堆,但是我想编辑代码以便可以创建Min堆。为了清楚起见,我希望能够轻松地从Max切换到Min堆,因为我将它用于两个独立的优先级队列,一个基于Min,另一个基于Max。

这是我的Heap.cpp

// *********************************************************
// Implementation file Heap.cpp for the ADT heap.
// *********************************************************
#include "Heap.h"  // header file for heap

heapClass::heapClass() : Size(0)
{
}  // end default constructor

bool heapClass::HeapIsEmpty() const
{
return bool(Size == 0);
}  // end HeapIsEmpty

void heapClass::HeapInsert(const heapItemType& NewItem,
                       bool& Success)
// Method: Inserts the new item after the last item in the
// heap and trickles it up to its proper position. The
// heap is full when it contains MAX_HEAP items.
{
Success = bool(Size < MAX_HEAP);

if (Success)
{  // place the new item at the end of the heap
    Items[Size] = NewItem;

    // trickle new item up to its proper position
    int Place = Size;
    int Parent = (Place - 1)/2;
    while ( (Parent >= 0) &&
           (Items[Place].Key() > Items[Parent].Key()) )
    {  // swap Items[Place] and Items[Parent]
        heapItemType Temp = Items[Parent];
        Items[Parent] = Items[Place];
        Items[Place] = Temp;

        Place = Parent;
        Parent = (Place -1 )/2;
    }  // end while

    ++Size;
}  // end if
}  // end HeapInsert

void heapClass::HeapDelete(heapItemType& RootItem,
                       bool& Success)
// Method: Swaps the last item in the heap with the root
// and trickles it down to its proper position.
{
Success = bool(!HeapIsEmpty());

if (Success)
{  RootItem = Items[0];
    Items[0] = Items[--Size];
    RebuildHeap(0);
}  // end if
}  // end HeapDelete

void heapClass::RebuildHeap(int Root)
{
// if the root is not a leaf and the root's search key
// is less than the larger of the search keys in the
// root's children
int Child = 2 * Root + 1;  // index of root's left
// child, if any
if ( Child < Size )
{  // root is not a leaf, so it has a left child at Child
    int RightChild = Child + 1;  // index of right child,
    // if any

    // if root has a right child, find larger child
    if ( (RightChild < Size) &&
        (Items[RightChild].Key() > Items[Child].Key()) )
        Child = RightChild;  // index of larger child

    // if the root's value is smaller than the
    // value in the larger child, swap values
    if ( Items[Root].Key() < Items[Child].Key() )
    {  heapItemType Temp = Items[Root];
        Items[Root] = Items[Child];
        Items[Child] = Temp;

        // transform the new subtree into a heap
        RebuildHeap(Child);
    }  // end if
   }  // end if

// if root is a leaf, do nothing
}  // end RebuildHeap

Heap.h

 // *********************************************************
 // Header file Heap.h for the ADT heap.
// *********************************************************

#include "Data.h"  // definition of itemClass
#include "PrecondViolatedExcep.h"

#pragma once

const int MAX_HEAP = 20;
typedef itemClass keyType;

typedef itemClass heapItemType;

class heapClass
{
public:
heapClass();  // default constructor
// copy constructor and destructor are
// supplied by the compiler

// heap operations:
virtual bool HeapIsEmpty() const;
// Determines whether a heap is empty.
// Precondition: None.
// Postcondition: Returns true if the heap is empty;
// otherwise returns false.

virtual void HeapInsert(const heapItemType& NewItem,
                        bool& Success);
// Inserts an item into a heap.
// Precondition: NewItem is the item to be inserted.
// Postcondition: If the heap was not full, NewItem is
// in its proper position and Success is true;
// otherwise Success is false.

virtual void HeapDelete(heapItemType& RootItem,
                        bool& Success);
// Retrieves and deletes the item in the root of a heap.
// This item has the largest search key in the heap.
// Precondition: None.
// Postcondition: If the heap was not empty, RootItem
// is the retrieved item, the item is deleted from the
// heap, and Success is true. However, if the heap was
// empty, removal is impossible and Success is false.

protected:
void RebuildHeap(int Root);
// Converts the semiheap rooted at index Root
// into a heap.

private:
heapItemType Items[MAX_HEAP];  // array of heap items
int          Size;             // number of heap items
};  // end class
// End of header file.

包含itemClass的片段

#include <stdio.h>

#include "Data.h"

/* Put in definitions of methods declared in Data.h
 - modify as you wish. */

/*  ==================================================
 Default constructor
 ================================================== */
itemClass::itemClass() : trackRequest(-100),
serialNum(-1)
{
}

/*  ==================================================
 Constructor
 ================================================== */
itemClass::itemClass(int trkR, int srlNum, bool dir)
: trackRequest(trkR),
 serialNum (srlNum),direction(dir)
{
}

   /*  ==================================================
  Key
  ================================================== */
/* This method returns the search key.
 Here we assume the key is the item itself. */

itemClass itemClass::Key() const
{
return *this ;
}

/*  ==================================================
 Equality Test
 ================================================== */
bool itemClass::operator== (const itemClass& Rhs) const
{
return (trackRequest == Rhs.trackRequest)
&& (serialNum == Rhs.serialNum) && (direction== Rhs.direction);
}

/*  ==================================================
 non-Equality Test
 ================================================== */
bool itemClass::operator!= (const itemClass& Rhs) const
{
return !(*this==Rhs) ;
}

 /*  ==================================================
 Less-Than Test
 ================================================== */
bool itemClass::operator< (const itemClass& Rhs) const
{

   return(trackRequest < Rhs.trackRequest) && (direction      <=Rhs.direction);
//return true;
 }

/*  ==================================================
 Less-Than-Or-Equal Test
 ================================================== */
bool itemClass::operator<= (const itemClass& Rhs) const
{
return (*this<Rhs) || (*this==Rhs) ;
}

 /*  ==================================================
 Greater-Than Test
 ================================================== */
bool itemClass::operator> (const itemClass& Rhs) const
{
return (!(*this<Rhs) && !(*this==Rhs)) ;
/* OR return (Rhs<*this); */
}

/*  ==================================================
 Greater-Than-Or-Equal Test
 ================================================== */
bool itemClass::operator>= (const itemClass& Rhs) const
{
return ( !(*this<Rhs) ) ;
}

3 个答案:

答案 0 :(得分:1)

你想要做的是让你的heapClass构造函数采用比较函数,你可以在课堂内部保存。然后让您的heapClass函数使用函子进行比较。您可以将其默认为operator< itemClass。但你也可以通过operator>传递顺序。

例如,请查看Compare functor如何传递给std::set以定义其排序http://en.cppreference.com/w/cpp/container/set

答案 1 :(得分:1)

有一些简单的方法。一种方法是将函数参数添加到heapClass进行比较。

template <typename Compare = std::greater<itemClass>>
class heapClass {

  private:

    Compare cmp;

  public:

    heapClass(Compare cmp = Compare()) : cmp(cmp);

    void HeapInsert(const heapItemType& NewItem,
                         bool& Success)
      // Method: Inserts the new item after the last item in the
      // heap and trickles it up to its proper position. The
      // heap is full when it contains MAX_HEAP items.
      {
      Success = bool(Size < MAX_HEAP);

      if (Success)
      {  // place the new item at the end of the heap
          Items[Size] = NewItem;

          // trickle new item up to its proper position
          int Place = Size;
          int Parent = (Place - 1)/2;
          while ( (Parent >= 0) &&
                 (cmp(Items[Place].Key(), Items[Parent].Key())) )
          {  // swap Items[Place] and Items[Parent]
              heapItemType Temp = Items[Parent];
              Items[Parent] = Items[Place];
              Items[Place] = Temp;

              Place = Parent;
              Parent = (Place -1 )/2;
          }  // end while

          ++Size;
      }        // end if
    }  // end HeapInsert
};

另外两种方法是使用std::priority_queuestd::make_heapstd::heap_popstd::heap_push等...两者都可以提供最小堆和最大堆语义。

答案 2 :(得分:0)

现在您的HeapInsert功能确实:

while ( (Parent >= 0) &&
       (Items[Place].Key() > Items[Parent].Key()) )

只需将>替换为<