我创建了一个简单的Java应用程序,它使用Apache Spark从Cassandra中检索数据,对其进行一些转换并将其保存在另一个Cassandra表中。
我正在使用在独立群集模式下配置的Apache Spark 1.4.1,其中包含位于我的计算机上的单个主服务器和从服务器。
DataFrame customers = sqlContext.cassandraSql("SELECT email, first_name, last_name FROM customer " +
"WHERE CAST(store_id as string) = '" + storeId + "'");
DataFrame customersWhoOrderedTheProduct = sqlContext.cassandraSql("SELECT email FROM customer_bought_product " +
"WHERE CAST(store_id as string) = '" + storeId + "' AND product_id = " + productId + "");
// We need only the customers who did not order the product
// We cache the DataFrame because we use it twice.
DataFrame customersWhoHaventOrderedTheProduct = customers
.join(customersWhoOrderedTheProduct
.select(customersWhoOrderedTheProduct.col("email")), customers.col("email").equalTo(customersWhoOrderedTheProduct.col("email")), "leftouter")
.where(customersWhoOrderedTheProduct.col("email").isNull())
.drop(customersWhoOrderedTheProduct.col("email"))
.cache();
int numberOfCustomers = (int) customersWhoHaventOrderedTheProduct.count();
Date reportTime = new Date();
// Prepare the Broadcast values. They are used in the map below.
Broadcast<String> bStoreId = sparkContext.broadcast(storeId, classTag(String.class));
Broadcast<String> bReportName = sparkContext.broadcast(MessageBrokerQueue.report_did_not_buy_product.toString(), classTag(String.class));
Broadcast<java.sql.Timestamp> bReportTime = sparkContext.broadcast(new java.sql.Timestamp(reportTime.getTime()), classTag(java.sql.Timestamp.class));
Broadcast<Integer> bNumberOfCustomers = sparkContext.broadcast(numberOfCustomers, classTag(Integer.class));
// Map the customers to a custom class, thus adding new properties.
DataFrame storeCustomerReport = sqlContext.createDataFrame(customersWhoHaventOrderedTheProduct.toJavaRDD()
.map(row -> new StoreCustomerReport(bStoreId.value(), bReportName.getValue(), bReportTime.getValue(), bNumberOfCustomers.getValue(), row.getString(0), row.getString(1), row.getString(2))), StoreCustomerReport.class);
// Save the DataFrame to cassandra
storeCustomerReport.write().mode(SaveMode.Append)
.option("keyspace", "my_keyspace")
.option("table", "my_report")
.format("org.apache.spark.sql.cassandra")
.save();
正如您可以看到我cache
customersWhoHaventOrderedTheProduct
数据框,然后执行count
并致电toJavaRDD
。
根据我的计算,这些动作只应执行一次。但是当我进入当前工作的Spark UI时,我会看到以下几个阶段:
正如您所看到的,每个动作都会执行两次。
我做错了吗?是否有任何我错过的环境?
非常感谢任何想法。
修改
我致电System.out.println(storeCustomerReport.toJavaRDD().toDebugString());
这是调试字符串:
(200) MapPartitionsRDD[43] at toJavaRDD at DidNotBuyProductReport.java:93 []
| MapPartitionsRDD[42] at createDataFrame at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[41] at map at DidNotBuyProductReport.java:90 []
| MapPartitionsRDD[40] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[39] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[38] at toJavaRDD at DidNotBuyProductReport.java:89 []
| ZippedPartitionsRDD2[37] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[31] at toJavaRDD at DidNotBuyProductReport.java:89 []
| ShuffledRDD[30] at toJavaRDD at DidNotBuyProductReport.java:89 []
+-(2) MapPartitionsRDD[29] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[28] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[27] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[3] at cache at DidNotBuyProductReport.java:76 []
| CassandraTableScanRDD[2] at RDD at CassandraRDD.scala:15 []
| MapPartitionsRDD[36] at toJavaRDD at DidNotBuyProductReport.java:89 []
| ShuffledRDD[35] at toJavaRDD at DidNotBuyProductReport.java:89 []
+-(2) MapPartitionsRDD[34] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[33] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[32] at toJavaRDD at DidNotBuyProductReport.java:89 []
| MapPartitionsRDD[5] at cache at DidNotBuyProductReport.java:76 []
| CassandraTableScanRDD[4] at RDD at CassandraRDD.scala:15 []
编辑2:
因此,经过一些研究结合试验和错误,我设法优化了工作。
我从customersWhoHaventOrderedTheProduct
创建了一个RDD,并在调用count()
操作之前将其缓存。 (我将缓存从DataFrame
移到RDD
)。
之后,我使用此RDD
创建storeCustomerReport
DataFrame
。
JavaRDD<Row> customersWhoHaventOrderedTheProductRdd = customersWhoHaventOrderedTheProduct.javaRDD().cache();
现在这些阶段看起来像这样:
正如您所看到的那样,count
和cache
已经消失了,但仍有两个“javaRDD&#39;动作。我不知道它们来自哪里,因为我在代码中只调用toJavaRDD
一次。
答案 0 :(得分:3)
您似乎在下面的代码段中应用了两个操作
// Map the customers to a custom class, thus adding new properties.
DataFrame storeCustomerReport = sqlContext.createDataFrame(customersWhoHaventOrderedTheProduct.toJavaRDD()
.map(row -> new StoreCustomerReport(bStoreId.value(), bReportName.getValue(), bReportTime.getValue(), bNumberOfCustomers.getValue(), row.getString(0), row.getString(1), row.getString(2))), StoreCustomerReport.class);
// Save the DataFrame to cassandra
storeCustomerReport.write().mode(SaveMode.Append)
.option("keyspace", "my_keyspace")
一个位于sqlContext.createDataFrame()
,另一个位于storeCustomerReport.write()
,这两个都需要customersWhoHaventOrderedTheProduct.toJavaRDD()
。
坚持生成的RDD应解决此问题。
JavaRDD cachedRdd = customersWhoHaventOrderedTheProduct.toJavaRDD().persist(StorageLevel.DISK_AND_MEMORY) //Or any other storage level