如何在Pyspark中加入多个列?

时间:2015-11-16 22:37:58

标签: python apache-spark join pyspark apache-spark-sql

我正在使用Spark 1.3,并希望使用python接口(SparkSQL)

加入多个列

以下作品:

我首先将它们注册为临时表。

numeric.registerTempTable("numeric")
Ref.registerTempTable("Ref")

test  = numeric.join(Ref, numeric.ID == Ref.ID, joinType='inner')

我现在想基于多个列加入它们。

我得到SyntaxError:语法无效:

test  = numeric.join(Ref,
   numeric.ID == Ref.ID AND numeric.TYPE == Ref.TYPE AND
   numeric.STATUS == Ref.STATUS ,  joinType='inner')

3 个答案:

答案 0 :(得分:51)

您应该使用& / |运算符并注意operator precedence==的优先级低于按位ANDOR) :

df1 = sqlContext.createDataFrame(
    [(1, "a", 2.0), (2, "b", 3.0), (3, "c", 3.0)],
    ("x1", "x2", "x3"))

df2 = sqlContext.createDataFrame(
    [(1, "f", -1.0), (2, "b", 0.0)], ("x1", "x2", "x3"))

df = df1.join(df2, (df1.x1 == df2.x1) & (df1.x2 == df2.x2))
df.show()

## +---+---+---+---+---+---+
## | x1| x2| x3| x1| x2| x3|
## +---+---+---+---+---+---+
## |  2|  b|3.0|  2|  b|0.0|
## +---+---+---+---+---+---+

答案 1 :(得分:19)

另一种方法是:

df1 = sqlContext.createDataFrame(
    [(1, "a", 2.0), (2, "b", 3.0), (3, "c", 3.0)],
    ("x1", "x2", "x3"))

df2 = sqlContext.createDataFrame(
    [(1, "f", -1.0), (2, "b", 0.0)], ("x1", "x2", "x4"))

df = df1.join(df2, ['x1','x2'])
df.show()

输出:

+---+---+---+---+
| x1| x2| x3| x4|
+---+---+---+---+
|  2|  b|3.0|0.0|
+---+---+---+---+

主要优势是表格所连接的列不会在输出中重复,从而降低遇到错误的风险,例如org.apache.spark.sql.AnalysisException: Reference 'x1' is ambiguous, could be: x1#50L, x1#57L.

每当两个表中的列都有不同的名称时,(例如,在上面的示例中,df2包含列y1y2和{ {1}}),您可以使用以下语法:

y4

答案 2 :(得分:1)

IMPORTDATA