我正在使用Spark 1.3,并希望使用python接口(SparkSQL)
加入多个列以下作品:
我首先将它们注册为临时表。
numeric.registerTempTable("numeric")
Ref.registerTempTable("Ref")
test = numeric.join(Ref, numeric.ID == Ref.ID, joinType='inner')
我现在想基于多个列加入它们。
我得到SyntaxError
:语法无效:
test = numeric.join(Ref,
numeric.ID == Ref.ID AND numeric.TYPE == Ref.TYPE AND
numeric.STATUS == Ref.STATUS , joinType='inner')
答案 0 :(得分:51)
您应该使用&
/ |
运算符并注意operator precedence(==
的优先级低于按位AND
和OR
) :
df1 = sqlContext.createDataFrame(
[(1, "a", 2.0), (2, "b", 3.0), (3, "c", 3.0)],
("x1", "x2", "x3"))
df2 = sqlContext.createDataFrame(
[(1, "f", -1.0), (2, "b", 0.0)], ("x1", "x2", "x3"))
df = df1.join(df2, (df1.x1 == df2.x1) & (df1.x2 == df2.x2))
df.show()
## +---+---+---+---+---+---+
## | x1| x2| x3| x1| x2| x3|
## +---+---+---+---+---+---+
## | 2| b|3.0| 2| b|0.0|
## +---+---+---+---+---+---+
答案 1 :(得分:19)
另一种方法是:
df1 = sqlContext.createDataFrame(
[(1, "a", 2.0), (2, "b", 3.0), (3, "c", 3.0)],
("x1", "x2", "x3"))
df2 = sqlContext.createDataFrame(
[(1, "f", -1.0), (2, "b", 0.0)], ("x1", "x2", "x4"))
df = df1.join(df2, ['x1','x2'])
df.show()
输出:
+---+---+---+---+
| x1| x2| x3| x4|
+---+---+---+---+
| 2| b|3.0|0.0|
+---+---+---+---+
主要优势是表格所连接的列不会在输出中重复,从而降低遇到错误的风险,例如org.apache.spark.sql.AnalysisException: Reference 'x1' is ambiguous, could be: x1#50L, x1#57L.
每当两个表中的列都有不同的名称时,(例如,在上面的示例中,df2
包含列y1
,y2
和{ {1}}),您可以使用以下语法:
y4
答案 2 :(得分:1)
IMPORTDATA