我有一个(重组)二叉树t = ((4,), (3, 5), (2, 4, 6), (1, 3, 5, 7))
,其格子级别被索引为(0,1,2,3)
。即4为索引0,而3,5为索引1,依此类推。我需要一组边缘端点的坐标(连接树节点)。当然,4连接到3和5; 3连接到2和4; 5连接到4和6。
我可能会采取任何方法吗?
输出是元素(以任何顺序)(这些是成对的对)
[(0,4),(1,3)], [(0,4),(1,5)],
[(1,3),(2,2)], [(1,3),(2,4)], [(1,5),(2,4)], [(1,5),(2,6)],
[(2,2),(3,1)], [(2,2),(3,3)], [(2,4),(3,3)], [(2,4),(3,5)], [(2,6),(3,5)], [(2,6),(3,7)]
树可以长大。任何可迭代的基本数据(列表,集合,元组,字典等)都可以。
我认为将树转换为矩阵的较低对角线会使事情变得更容易,但现在认为可能存在直接的方法。
如果需要澄清,请告诉我。
答案 0 :(得分:1)
如果所有相邻节点都被视为对:
t = ((4,), (3, 5), (2, 4, 6), (1, 3, 5, 7))
from itertools import tee
a, b = tee(t)
next(b)
for ind, (t1, t2) in enumerate(zip(a, b)):
print([[(ind, i), (ind + 1, j)] for i in t1 for j in t2])
您必须对输出进行分组,但这应该更接近您的需要:
def pairs(t):
a, b = tee(t)
next(b)
for ind, (t1, t2) in enumerate(zip(a, b)):
it = iter(t2)
nxt = next(it)
for ele in t1:
n = next(it)
yield [(ind, ele), (ind + 1, nxt)]
yield [(ind, ele), (ind + 1, n)]
nxt = n
from pprint import pprint as pp
pp(list(pairs(t)),compact=1)
输出:
[[(0, 4), (1, 3)], [(0, 4), (1, 5)], [(1, 3), (2, 2)], [(1, 3), (2, 4)],
[(1, 5), (2, 4)], [(1, 5), (2, 6)], [(2, 2), (3, 1)], [(2, 2), (3, 3)],
[(2, 4), (3, 3)], [(2, 4), (3, 5)], [(2, 6), (3, 5)], [(2, 6), (3, 7)]]