Pandas半结构化JSON数据框到简单的Pandas数据帧

时间:2015-11-12 18:43:25

标签: python json python-2.7 pyparsing

我从红移群集中获取了大量数据。 前4列用'|'分隔然后2列是JSON。

XXX|ABANDONED|1197|11|"{""currency"":""EUR""    item_id"":""143""   type"":""FLIGHT""   name"":""PAR-FEZ""  price"":1111    origin"":""PAR""    destination"":""FEZ""   merchant"":""GOV""  flight_type"":""OW""    flight_segment"":[{ origin"":""ORY""    destination"":""FEZ""   departure_date_time"":""2015-08-02T07:20""  arrival_date_time"":""2015-08-02T09:05""    carrier"":""AT""    f_class"":""ECONOMY""}]}"|"{""type"":""FLIGHT"" name"":""FI_ORY-OUD""   item_id"":""FLIGHT""    currency"":""EUR""  price"":111 origin"":""ORY""    destination"":""OUD""   flight_type"":""OW""    flight_segment"":[{""origin"":""ORY""   destination"":""OUD""   departure_date_time"":""2015-08-02T13:55""  arrival_date_time"":""2015-08-02T15:30""    flight_number"":""AT625""   carrier"":""AT""    f_class"":""ECONOMIC_DISCOUNTED""}]}"   

在Python 2.7中工作想要将JSON值分离出来并将其转换为Pandas数据帧,但我对pyparsing缺乏经验。

我的方法是将文件作为带有'|'的Pandas数据框读入作为分隔符,而不是使用包含JSON的列并使用'JSON_normalise'展平它,但JSON_normalise不会对熊猫的列进行索引

我发现了解决方案herehere,但其中一个不适合我的“混合数据”,另一个则是针对相当大的JSON文件进行简单化

有关如何在此数据上部署Pyparsing的任何提示都非常有用。 感谢

Pyparsing: Parsing semi-JSON nested plaintext data to a list

Parsing semi-structured json data(Python/R)

1 个答案:

答案 0 :(得分:1)

将上面的输入字符串作为名为'data'的变量,这个Python + pyparsing代码将对它有所了解。不幸的是,第四个'|'右侧的东西不是真正的JSON。幸运的是, 格式足够好,可以解析它而不会过度不适。请参阅以下程序中的嵌入式注释:

fields = data.split('|',4)
result = obsList.parseString(fields[-1])

# we get back a list of objects, dump them out
for r in result:
    print r.dump()
    print

现在将该解析器应用于您的'数据':

[['currency', 'EUR'], ['item_id', '143'], ['type', 'FLIGHT'], ['name', 'PAR-FEZ'], ['price', 1111], ['origin', 'PAR'], ['destination', 'FEZ'], ['merchant', 'GOV'], ['flight_type', 'OW'], ['flight_segment', [[['origin', 'ORY'], ['destination', 'FEZ'], ['departure_date_time', datetime.datetime(2015, 8, 2, 7, 20)], ['arrival_date_time', datetime.datetime(2015, 8, 2, 9, 5)], ['carrier', 'AT'], ['f_class', 'ECONOMY']]]]]
- currency: EUR
- destination: FEZ
- flight_segment: 
  [0]:
    [['origin', 'ORY'], ['destination', 'FEZ'], ['departure_date_time', datetime.datetime(2015, 8, 2, 7, 20)], ['arrival_date_time', datetime.datetime(2015, 8, 2, 9, 5)], ['carrier', 'AT'], ['f_class', 'ECONOMY']]
    - arrival_date_time: 2015-08-02 09:05:00
    - carrier: AT
    - departure_date_time: 2015-08-02 07:20:00
    - destination: FEZ
    - f_class: ECONOMY
    - origin: ORY
- flight_type: OW
- item_id: 143
- merchant: GOV
- name: PAR-FEZ
- origin: PAR
- price: 1111
- type: FLIGHT

[['type', 'FLIGHT'], ['name', 'FI_ORY-OUD'], ['item_id', 'FLIGHT'], ['currency', 'EUR'], ['price', 111], ['origin', 'ORY'], ['destination', 'OUD'], ['flight_type', 'OW'], ['flight_segment', [[['origin', 'ORY'], ['destination', 'OUD'], ['departure_date_time', datetime.datetime(2015, 8, 2, 13, 55)], ['arrival_date_time', datetime.datetime(2015, 8, 2, 15, 30)], ['flight_number', 'AT625'], ['carrier', 'AT'], ['f_class', 'ECONOMIC_DISCOUNTED']]]]]
- currency: EUR
- destination: OUD
- flight_segment: 
  [0]:
    [['origin', 'ORY'], ['destination', 'OUD'], ['departure_date_time', datetime.datetime(2015, 8, 2, 13, 55)], ['arrival_date_time', datetime.datetime(2015, 8, 2, 15, 30)], ['flight_number', 'AT625'], ['carrier', 'AT'], ['f_class', 'ECONOMIC_DISCOUNTED']]
    - arrival_date_time: 2015-08-02 15:30:00
    - carrier: AT
    - departure_date_time: 2015-08-02 13:55:00
    - destination: OUD
    - f_class: ECONOMIC_DISCOUNTED
    - flight_number: AT625
    - origin: ORY
- flight_type: OW
- item_id: FLIGHT
- name: FI_ORY-OUD
- origin: ORY
- price: 111
- type: FLIGHT

给出:

res[0].currency
res[0].price
res[0].destination
res[0].flight_segment[0].origin
len(res[0].flight_segment) # gives how many segments

请注意,非字符串的值(整数,时间戳等)已经转换为Python类型。由于字段名称保存为dict键,因此您可以按名称访问字段,如下所示:

@{ Session.Remove("errors"); }