How to use surf and sift detector in OpenCV for Python

时间:2015-11-12 11:17:37

标签: python opencv surf

I was trying a code for feature matching which uses the function SURF(). Upon execution it gives an error saying "AttributeError: 'module' object has no attribute 'SURF'".

How can I download this module for Python (Windows) and fix this error?

3 个答案:

答案 0 :(得分:4)

You can try ORB (Oriented FAST and Rotated BRIEF) as an alternate to SURF in open cv. It almost works as good as SURF and SIFT and it's free unlike SIFT and SURF which are patented and can't be used commercially.
You can read about it more in opencv-python documentation here

Here's the sample code for your ease

import cv2
from matplotlib import pyplot as plt

img1 = cv2.imread('text.png',cv2.COLOR_BGR2GRAY) # queryImage
img2 = cv2.imread('original.png',cv2.COLOR_BGR2GRAY) # trainImage
# Initiate SIFT detector
orb = cv2.ORB_create()

# find the keypoints and descriptors with SIFT
kp1, des1 = orb.detectAndCompute(img1,None)
kp2, des2 = orb.detectAndCompute(img2,None)
# create BFMatcher object
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
# Match descriptors.
matches = bf.match(des1,des2)

# Sort them in the order of their distance.
matches = sorted(matches, key = lambda x:x.distance) 
# Draw first 10 matches.
img3 = cv2.drawMatches(img1,kp1,img2,kp2,matches[:10],None, flags=2)

plt.imshow(img3),plt.show()

答案 1 :(得分:1)

起初

pip install opencv-contrib-python

然后使用此hack创建sift对象

sift = cv2.xfeatures2d.SIFT_create()

答案 2 :(得分:0)

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('simple.jpg',0)
# Initiate FAST object with default values
fast = cv.FastFeatureDetector_create()
# find and draw the keypoints
kp = fast.detect(img,None)
img2 = cv.drawKeypoints(img, kp, None, color=(255,0,0))
# Print all default params
print( "Threshold: {}".format(fast.getThreshold()) )
print( "nonmaxSuppression:{}".format(fast.getNonmaxSuppression()) )
print( "neighborhood: {}".format(fast.getType()) )
print( "Total Keypoints with nonmaxSuppression: {}".format(len(kp)) )
cv.imwrite('fast_true.png',img2)
#Disable nonmaxSuppression
fast.setNonmaxSuppression(0)
kp = fast.detect(img,None)
print( "Total Keypoints without nonmaxSuppression: {}".format(len(kp)) )
img3 = cv.drawKeypoints(img, kp, None, color=(255,0,0))
cv.imwrite('fast_false.png',img3)