所需的最低Cuda能力为3.5

时间:2015-11-11 13:41:25

标签: amazon-ec2 tensorflow

在g2.2xlarge EC2实例上安装TensorFlow及其依赖项之后,我尝试从入门页面运行一个MNIST示例:

python tensorflow/models/image/mnist/convolutional.py

但我收到以下警告:

I tensorflow/core/common_runtime/gpu/gpu_device.cc:611] Ignoring gpu device 
(device: 0, name: GRID K520, pci bus id: 0000:00:03.0) with Cuda compute 
capability 3.0. The minimum required Cuda capability is 3.5.

这是一项艰难的要求吗?我有机会评论一下TensorFlow的分支吗?能够在AWS中训练模型真是太棒了。

3 个答案:

答案 0 :(得分:9)

official installation page中有一个部分指导您启用Cuda 3,但您需要从源代码构建Tensorflow。

$ TF_UNOFFICIAL_SETTING=1 ./configure

# Same as the official settings above

WARNING: You are configuring unofficial settings in TensorFlow. Because some
external libraries are not backward compatible, these settings are largely
untested and unsupported.

Please specify a list of comma-separated Cuda compute capabilities you want to
build with. You can find the compute capability of your device at:
https://developer.nvidia.com/cuda-gpus.
Please note that each additional compute capability significantly increases
your build time and binary size. [Default is: "3.5,5.2"]: 3.0

Setting up Cuda include
Setting up Cuda lib64
Setting up Cuda bin
Setting up Cuda nvvm
Configuration finished

答案 1 :(得分:8)

目前,官方仅支持具有计算能力> = 3.5的GPU。但是,GitHub用户@infojunkie提供了a patch,可以将TensorFlow与具有3.0计算能力的GPU一起使用。

官方修复正在开发中。同时,请查看GitHub issue上有关添加此支持的讨论。

答案 2 :(得分:2)

有一个简单的伎俩。你甚至不必从源头建立TF。

tensorflow\python\_pywrap_tensorflow.pyd文件中,有两个正则表达式3\.5.*5\.2。只需将3.5替换为3.0

在Windows 10,Anaconda 4.2.13,Python 3.5.2,TensorFlow 0.12,CUDA 8,NVidia GTX 660m(CUDA上限3.0)上进行了测试。