如何在GHCJS程序中定期执行操作?

时间:2015-11-09 14:18:25

标签: haskell concurrency ghcjs

是否应该通过Javascript使用setInterval,或者使用一些基于线程的惯用解决方案?

2 个答案:

答案 0 :(得分:8)

使用setInterval提出some challenges以及Alexander,Erik和Luite自己的评论让我尝试线程。这无缝地工作,代码非常干净,类似于以下内容:

import Control.Concurrent( forkIO, threadDelay )
import Control.Monad( forever )

... within an IO block
threadId <- forkIO $ forever $ do
  threadDelay (60 * 1000 * 1000) -- one minute in microseconds, not milliseconds like in Javascript!
  doWhateverYouLikeHere

Haskell具有轻量级线程的概念,因此这是以异步方式运行操作的惯用Haskell方式,就像使用Javascript setIntervalsetTimeout一样。

答案 1 :(得分:4)

如果您不关心动机,只需滚动到我下面的最佳解决方案runPeriodicallyConstantDrift如果您更喜欢结果较差的简单解决方案,请参阅runPeriodicallySmallDrift

我的答案不是针对GHCJS的,并且尚未在GHCJS上进行过测试,只有GHC,但它说明了the OP's naive solution的问题。

First Strawman解决方案:runPeriodicallyBigDrift

以下是我的OP解决方案版本,供以下比较:

import           Control.Concurrent ( threadDelay )
import           Control.Monad ( forever )

-- | Run @action@ every @period@ seconds.
runPeriodicallyBigDrift :: Double -> IO () -> IO ()
runPeriodicallyBigDrift period action = forever $ do
  action
  threadDelay (round $ period * 10 ** 6)

假设“定期执行一个动作”意味着每个周期开始动作很多秒, OP的解决方案有问题,因为threadDelay没有考虑时间行动本身需要。经过n次迭代后,动作的开始时间至少会减少运行动作n次所需的时间!

第二个稻草人解决方案:runPeriodicallySmallDrift

因此,如果我们真的想在每个时段开始一个新动作,我们需要考虑动作运行所需的时间。如果周期与生成线程所需的时间相比相对较大,那么这个简单的解决方案可能适合您:

import           Control.Concurrent ( threadDelay )
import           Control.Concurrent.Async ( async, link )
import           Control.Monad ( forever )

-- | Run @action@ every @period@ seconds.
runPeriodicallySmallDrift :: Double -> IO () -> IO ()
runPeriodicallySmallDrift period action = forever $ do
  -- We reraise any errors raised by the action, but
  -- we don't check that the action actually finished within one
  -- period. If the action takes longer than one period, then
  -- multiple actions will run concurrently.
  link =<< async action
  threadDelay (round $ period * 10 ** 6)

在我的实验中(下面有更多详细信息),在我的系统上生成一个线程需要大约0.001秒,因此在n次迭代后runPeriodicallySmallDrift的漂移大约是千分之一秒,这可能是微不足道的。一些用例。

最终解决方案:runPeriodicallyConstantDrift

最后,假设我们只需要恒定漂移,这意味着漂移总是小于某个常数,并且不会随着周期动作的迭代次数而增长。我们可以通过跟踪自开始以来的总时间来实现持续漂移,并在总时间为n次的时间段内开始n次迭代:

import           Control.Concurrent ( threadDelay )
import           Data.Time.Clock.POSIX ( getPOSIXTime )
import           Text.Printf ( printf )

-- | Run @action@ every @period@ seconds.
runPeriodicallyConstantDrift :: Double -> IO () -> IO ()
runPeriodicallyConstantDrift period action = do
  start <- getPOSIXTime
  go start 1
  where
    go start iteration = do
      action
      now <- getPOSIXTime
      -- Current time.
      let elapsed = realToFrac $ now - start
      -- Time at which to run action again.
      let target = iteration * period
      -- How long until target time.
      let delay = target - elapsed
      -- Fail loudly if the action takes longer than one period.  For
      -- some use cases it may be OK for the action to take longer
      -- than one period, in which case remove this check.
      when (delay < 0 ) $ do
        let msg = printf "runPeriodically: action took longer than one period: delay = %f, target = %f, elapsed = %f"
                  delay target elapsed
        error msg
      threadDelay (round $ delay * microsecondsInSecond)
      go start (iteration + 1)
    microsecondsInSecond = 10 ** 6

根据以下实验,漂移总是大约1/1000秒,与行动的迭代次数无关。

通过测试比较解决方案

为了比较这些解决方案,我们创建了一个动作来跟踪它自己的漂移并告诉我们,并在上面的每个runPeriodically*实现中运行它:

import           Control.Concurrent ( threadDelay )
import           Data.IORef ( newIORef, readIORef, writeIORef )
import           Data.Time.Clock.POSIX ( getPOSIXTime )
import           Text.Printf ( printf )

-- | Use a @runPeriodically@ implementation to run an action
-- periodically with period @period@. The action takes
-- (approximately) @runtime@ seconds to run.
testRunPeriodically :: (Double -> IO () -> IO ()) -> Double -> Double -> IO ()
testRunPeriodically runPeriodically runtime period = do
  iterationRef <- newIORef 0
  start <- getPOSIXTime
  startRef <- newIORef start
  runPeriodically period $ action startRef iterationRef
  where
    action startRef iterationRef = do
      now <- getPOSIXTime
      start <- readIORef startRef
      iteration <- readIORef iterationRef
      writeIORef iterationRef (iteration + 1)
      let drift = (iteration * period) - (realToFrac $ now - start)
      printf "test: iteration = %.0f, drift = %f\n" iteration drift
      threadDelay (round $ runtime * 10**6)

以下是测试结果。在每种情况下,测试运行0.05秒的动作,并使用两倍的时间,即0.1秒。

对于runPeriodicallyBigDrift,n次迭代后的漂移大约是单次迭代的运行时间的n倍,如预期的那样。在100次迭代之后,漂移为-5.15,并且仅从动作的运行时间预测的漂移是-5.00:

ghci> testRunPeriodically runPeriodicallyBigDrift 0.05 0.1
...
test: iteration = 98, drift = -5.045410253
test: iteration = 99, drift = -5.096661091
test: iteration = 100, drift = -5.148137684
test: iteration = 101, drift = -5.199764033999999
test: iteration = 102, drift = -5.250980596
...

对于runPeriodicallySmallDrift,n次迭代后的漂移约为0.001秒,可能是在我的系统上产生线程所需的时间:

ghci> testRunPeriodically runPeriodicallySmallDrift 0.05 0.1
...
test: iteration = 98, drift = -0.08820333399999924
test: iteration = 99, drift = -0.08908210599999933
test: iteration = 100, drift = -0.09006684400000076
test: iteration = 101, drift = -0.09110764399999915
test: iteration = 102, drift = -0.09227584299999947
...

对于runPeriodicallyConstantDrift,漂移在大约0.001秒内保持不变(加上噪声):

ghci> testRunPeriodically runPeriodicallyConstantDrift 0.05 0.1
...
test: iteration = 98, drift = -0.0009586619999986112
test: iteration = 99, drift = -0.0011010979999994674
test: iteration = 100, drift = -0.0011610369999992542
test: iteration = 101, drift = -0.0004908619999977049
test: iteration = 102, drift = -0.0009897379999994627
...

如果我们关注恒定漂移的水平,那么更复杂的解决方案可以跟踪平均恒定漂移并对其进行调整。

对有状态周期循环的推广

在实践中,我意识到我的一些循环具有从一次迭代传递到下一次迭代的状态。以下是runPeriodicallyConstantDrift的略微概括,以支持:

import           Control.Concurrent ( threadDelay )
import           Data.IORef ( newIORef, readIORef, writeIORef )
import           Data.Time.Clock.POSIX ( getPOSIXTime )
import           Text.Printf ( printf )

-- | Run a stateful @action@ every @period@ seconds.
--
-- Achieves uniformly bounded drift (i.e. independent of the number of
-- iterations of the action) of about 0.001 seconds,
runPeriodicallyWithState :: Double -> st -> (st -> IO st) -> IO ()
runPeriodicallyWithState period st0 action = do
  start <- getPOSIXTime
  go start 1 st0
  where
    go start iteration st = do
      st' <- action st
      now <- getPOSIXTime
      let elapsed = realToFrac $ now - start
      let target = iteration * period
      let delay = target - elapsed
      -- Warn if the action takes longer than one period. Originally I
      -- was failing in this case, but in my use case we sometimes,
      -- but very infrequently, take longer than the period, and I
      -- don't actually want to crash in that case.
      when (delay < 0 ) $ do
        printf "WARNING: runPeriodically: action took longer than one period: delay = %f, target = %f, elapsed = %f"
          delay target elapsed
      threadDelay (round $ delay * microsecondsInSecond)
      go start (iteration + 1) st'
    microsecondsInSecond = 10 ** 6

-- | Run a stateless @action@ every @period@ seconds.
--
-- Achieves uniformly bounded drift (i.e. independent of the number of
-- iterations of the action) of about 0.001 seconds,
runPeriodically :: Double -> IO () -> IO ()
runPeriodically period action =
  runPeriodicallyWithState period () (const action)