所以我长期坚持这个问题。 我想我应该首先创建这两个函数,如下所示:
n = runif(10000)
int sum = 0
estimator1_fun = function(n){
for(i in 1:10000){
sum = sum + ((n/i)*runif(1))
)
return (sum)
}
并对其他函数执行相同操作,并使用mse公式?我是否正确接近这个?我尝试格式化它,但发现使用图像会更好。
答案 0 :(得分:0)
假设U(0,Theta_0)是从0到Theta_0的均匀分布,并且Theta_0是固定常数,我将按如下方式进行:
1. Define Theta_0. Give it a fixed value.
2. Write the function that gives a random number from that distribution
- The distribution function is runif(0,Theta_0).
- Arguments could be Theta_0 and N.
3. Sample it a few thousand (or whatever) times into a vector X.
4. Calculate the two estimates.
5. Repeat steps 3 & 4 for more samples
6. Plot the two estimates against the number of samples and
see if it is approaching Theta_0