如何在此代码中使用我自己的文件而不是使用数据集

时间:2015-11-07 09:59:29

标签: python python-2.7 classification naivebayes

我正在实现这个代码,这给了我相应的输出,但我想将这四行“数据集”保存在一个文件中然后使用它。我可以这样做吗?我怎么能用我自己的文件代替手动输入数据集?

from naiveBayesClassifier import tokenizer

from naiveBayesClassifier.trainer import Trainer

from naiveBayesClassifier.classifier import Classifier

nTrainer = Trainer(tokenizer)


dataSet =[
    {'text': 'hello everyone', 'category': 'NO'},

    {'text': 'dont use words like jerk', 'category': 'YES'},

    {'text': 'what the hell.', 'category': 'NO'},

    {'text': 'you jerk','category': 'yes'},


]

for n in dataSet:

    nTrainer.train(n['text'], n['category'])

nClassifier = Classifier(nTrainer.data, tokenizer)
.
unknownInstance = "Even if I eat too much, is not it possible to lose some weight"

classification = nClassifier.classify(unknownInstance)

print classification

2 个答案:

答案 0 :(得分:1)

您可以将数据集存储为json文件,然后将其加载到您的python代码中:

import json


with open('data.json') as f:
    dataSet = json.loads(f.read())

    # Use dataset.

答案 1 :(得分:0)

这条线似乎是最有效的训练工作。

nTrainer.train(n['text'], n['category'])

这条线似乎在学习后进行预测。

classification = nClassifier.classify(unknownInstance)

因此,如果您有一个语料库列表(培训数据),您要预测的相应标签和数据列表列表(未知实例)
你可以这样像

from naiveBayesClassifier import tokenizer
from naiveBayesClassifier.trainer import Trainer
from naiveBayesClassifier.classifier import Classifier

corpus = ['hello everyone', 'dont use words like jerk', 'what the hell.', 'you jerk'] # Your training data
labels = ['NO', 'YES', 'NO', 'YES'] # Your labels
unknown_data = ['Even if I eat too much, is not it possible to lose some weight'] # List of data to be predicted

nTrainer = Trainer(tokenizer)

# model training
for item, category in zip(corpus, labels):
    nTrainer.train(item, category)

nClassifier = Classifier(nTrainer.data, tokenizer)
predictions = [ nClassifier.classify(unknownInstance)  for unknownInstance in unknown_data]

print classification