寻找一些眼球来验证下面的psuedo python块是否有意义。我想要生成一些线程来尽可能快地实现一些inproc函数。我的想法是在主循环中生成线程,因此应用程序将以并行/并发方式同时运行线程
chunk of code
-get the filenames from a dir
-write each filename ot a queue
-spawn a thread for each filename, where each thread
waits/reads value/data from the queue
-the threadParse function then handles the actual processing
based on the file that's included via the "execfile" function...
# System modules
from Queue import Queue
from threading import Thread
import time
# Local modules
#import feedparser
# Set up some global variables
appqueue = Queue()
# more than the app will need
# this matches the number of files that will ever be in the
# urldir
#
num_fetch_threads = 200
def threadParse(q)
#decompose the packet to get the various elements
line = q.get()
college,level,packet=decompose (line)
#build name of included file
fname=college+"_"+level+"_Parse.py"
execfile(fname)
q.task_done()
#setup the master loop
while True
time.sleep(2)
# get the files from the dir
# setup threads
filelist="ls /urldir"
if filelist
foreach file_ in filelist:
worker = Thread(target=threadParse, args=(appqueue,))
worker.start()
# again, get the files from the dir
#setup the queue
filelist="ls /urldir"
foreach file_ in filelist:
#stuff the filename in the queue
appqueue.put(file_)
# Now wait for the queue to be empty, indicating that we have
# processed all of the downloads.
#don't care about this part
#print '*** Main thread waiting'
#appqueue.join()
#print '*** Done'
感谢/评论/指示......
感谢
答案 0 :(得分:0)
如果我理解这一点:你产生了很多线程来更快地完成任务。
仅当在不保存GIL的情况下完成每个线程中完成的作业的主要部分时,这才有效。因此,如果有大量的数据来自网络,磁盘或类似的东西,那么这可能是一个好主意。 如果每个任务都使用了大量的CPU,那么这将在单核1-CPU机器上运行,您也可以按顺序执行它们。
我应该补充一点,我写的内容对于CPython来说是正确的,但不一定适用于Jython / IronPython。 另外,我应该补充一点,如果你需要使用更多的CPU /核心,那么multiprocessing模块可能会有所帮助。