我试图利用高斯内核可分离的事实来实现高性能的高斯模糊,即:即您可以将2D卷积表示为两个1D卷积的组合。
我能够使用以下代码生成两个我认为正确的内核。
/// <summary>
/// Create a 1 dimensional Gaussian kernel using the Gaussian G(x) function
/// </summary>
/// <param name="horizontal">Whether to calculate a horizontal kernel.</param>
/// <returns>The <see cref="T:float[,]"/></returns>
private float[,] CreateGaussianKernel(bool horizontal)
{
int size = this.kernelSize;
float[,] kernel = horizontal ? new float[1, size] : new float[size, 1];
float sum = 0.0f;
float midpoint = (size - 1) / 2f;
for (int i = 0; i < size; i++)
{
float x = i - midpoint;
float gx = this.Gaussian(x);
sum += gx;
if (horizontal)
{
kernel[0, i] = gx;
}
else
{
kernel[i, 0] = gx;
}
}
// Normalise kernel so that the sum of all weights equals 1
if (horizontal)
{
for (int i = 0; i < size; i++)
{
kernel[0, i] = kernel[0, i] / sum;
}
}
else
{
for (int i = 0; i < size; i++)
{
kernel[i, 0] = kernel[i, 0] / sum;
}
}
return kernel;
}
/// <summary>
/// Implementation of 1D Gaussian G(x) function
/// </summary>
/// <param name="x">The x provided to G(x)</param>
/// <returns>The Gaussian G(x)</returns>
private float Gaussian(float x)
{
const float Numerator = 1.0f;
float deviation = this.sigma;
float denominator = (float)(Math.Sqrt(2 * Math.PI) * deviation);
float exponentNumerator = -x * x;
float exponentDenominator = (float)(2 * Math.Pow(deviation, 2));
float left = Numerator / denominator;
float right = (float)Math.Exp(exponentNumerator / exponentDenominator);
return left * right;
}
内核大小由sigma计算如下。
this.kernelSize = ((int)Math.Ceiling(sigma) * 2) + 1;
this.sigma = sigma;
给定 3 的sigma。这会在每个方向产生以下结果。
0.106288522,
0.140321344,
0.165770069,
0.175240144,
0.165770069,
0.140321344,
0.106288522
总结为1,所以我在正确的道路上。
虽然我不确定是什么,但是因为出现了问题,因此将内核应用于图像会很困难。
我使用以下代码来运行2遍算法,该算法在对像Sobel或Prewitt这两个方向进行边缘检测的内核进行卷积时非常有效。
protected override void Apply(ImageBase target,
ImageBase source,
Rectangle targetRectangle,
Rectangle sourceRectangle,
int startY,
int endY)
{
float[,] kernelX = this.KernelX;
float[,] kernelY = this.KernelY;
int kernelYHeight = kernelY.GetLength(0);
int kernelYWidth = kernelY.GetLength(1);
int kernelXHeight = kernelX.GetLength(0);
int kernelXWidth = kernelX.GetLength(1);
int radiusY = kernelYHeight >> 1;
int radiusX = kernelXWidth >> 1;
int sourceY = sourceRectangle.Y;
int sourceBottom = sourceRectangle.Bottom;
int startX = sourceRectangle.X;
int endX = sourceRectangle.Right;
int maxY = sourceBottom - 1;
int maxX = endX - 1;
Parallel.For(
startY,
endY,
y =>
{
if (y >= sourceY && y < sourceBottom)
{
for (int x = startX; x < endX; x++)
{
float rX = 0;
float gX = 0;
float bX = 0;
float rY = 0;
float gY = 0;
float bY = 0;
// Apply each matrix multiplier to the
// color components for each pixel.
for (int fy = 0; fy < kernelYHeight; fy++)
{
int fyr = fy - radiusY;
int offsetY = y + fyr;
offsetY = offsetY.Clamp(0, maxY);
for (int fx = 0; fx < kernelXWidth; fx++)
{
int fxr = fx - radiusX;
int offsetX = x + fxr;
offsetX = offsetX.Clamp(0, maxX);
Color currentColor = source[offsetX, offsetY];
float r = currentColor.R;
float g = currentColor.G;
float b = currentColor.B;
if (fy < kernelXHeight)
{
rX += kernelX[fy, fx] * r;
gX += kernelX[fy, fx] * g;
bX += kernelX[fy, fx] * b;
}
if (fx < kernelYWidth)
{
rY += kernelY[fy, fx] * r;
gY += kernelY[fy, fx] * g;
bY += kernelY[fy, fx] * b;
}
}
}
float red = (float)Math.Sqrt((rX * rX) + (rY * rY));
float green = (float)Math.Sqrt((gX * gX) + (gY * gY));
float blue = (float)Math.Sqrt((bX * bX) + (bY * bY));
Color targetColor = target[x, y];
target[x, y] = new Color(red,
green, blue, targetColor.A);
}
}
});
}
这是输入图片:
这是使用3 sigma尝试模糊的图像。
你可以看到有些不对劲。这就像我从错误的点或其他地方采样。
有什么想法吗?我很欣赏这是一个冗长的问题。
因此,根据Nico Schertler的建议,我将算法分为两遍,如下所示:
protected override void Apply(
ImageBase target,
ImageBase source,
Rectangle targetRectangle,
Rectangle sourceRectangle,
int startY,
int endY)
{
float[,] kernelX = this.KernelX;
float[,] kernelY = this.KernelY;
int kernelXHeight = kernelX.GetLength(0);
int kernelXWidth = kernelX.GetLength(1);
int kernelYHeight = kernelY.GetLength(0);
int kernelYWidth = kernelY.GetLength(1);
int radiusXy = kernelXHeight >> 1;
int radiusXx = kernelXWidth >> 1;
int radiusYy = kernelYHeight >> 1;
int radiusYx = kernelYWidth >> 1;
int sourceY = sourceRectangle.Y;
int sourceBottom = sourceRectangle.Bottom;
int startX = sourceRectangle.X;
int endX = sourceRectangle.Right;
int maxY = sourceBottom - 1;
int maxX = endX - 1;
// Horizontal blur
Parallel.For(
startY,
endY,
y =>
{
if (y >= sourceY && y < sourceBottom)
{
for (int x = startX; x < endX; x++)
{
float rX = 0;
float gX = 0;
float bX = 0;
// Apply each matrix multiplier to the color
// components for each pixel.
for (int fy = 0; fy < kernelXHeight; fy++)
{
int fyr = fy - radiusXy;
int offsetY = y + fyr;
offsetY = offsetY.Clamp(0, maxY);
for (int fx = 0; fx < kernelXWidth; fx++)
{
int fxr = fx - radiusXx;
int offsetX = x + fxr;
offsetX = offsetX.Clamp(0, maxX);
Color currentColor = source[offsetX, offsetY];
float r = currentColor.R;
float g = currentColor.G;
float b = currentColor.B;
rX += kernelX[fy, fx] * r;
gX += kernelX[fy, fx] * g;
bX += kernelX[fy, fx] * b;
}
}
float red = rX;
float green = gX;
float blue = bX;
Color targetColor = target[x, y];
target[x, y] = new Color(red, green, blue, targetColor.A);
}
}
});
// Vertical blur
Parallel.For(
startY,
endY,
y =>
{
if (y >= sourceY && y < sourceBottom)
{
for (int x = startX; x < endX; x++)
{
float rY = 0;
float gY = 0;
float bY = 0;
// Apply each matrix multiplier to the
// color components for each pixel.
for (int fy = 0; fy < kernelYHeight; fy++)
{
int fyr = fy - radiusYy;
int offsetY = y + fyr;
offsetY = offsetY.Clamp(0, maxY);
for (int fx = 0; fx < kernelYWidth; fx++)
{
int fxr = fx - radiusYx;
int offsetX = x + fxr;
offsetX = offsetX.Clamp(0, maxX);
Color currentColor = source[offsetX, offsetY];
float r = currentColor.R;
float g = currentColor.G;
float b = currentColor.B;
rY += kernelY[fy, fx] * r;
gY += kernelY[fy, fx] * g;
bY += kernelY[fy, fx] * b;
}
}
float red = rY;
float green = gY;
float blue = bY;
Color targetColor = target[x, y];
target[x, y] = new Color(red, green, blue, targetColor.A);
}
}
});
}
我越来越接近目标,因为现在有一种模糊效果。不幸的是,这是不正确的。
如果你仔细观察,你会发现垂直方向有双重条纹,水平方向模糊不够。下面的图像清楚地表明,当我将西格玛提升到10时。
任何助手都会很棒。
答案 0 :(得分:4)
好的,最后一次更新我有点傻,没有创建一个临时图像来反对第二次传递。
这是卷积算法的完整工作样本。原始的高斯内核创建代码是正确的:
/// <inheritdoc/>
protected override void Apply(
ImageBase target,
ImageBase source,
Rectangle targetRectangle,
Rectangle sourceRectangle,
int startY,
int endY)
{
float[,] kernelX = this.KernelX;
float[,] kernelY = this.KernelY;
ImageBase firstPass = new Image(source.Width, source.Height);
this.ApplyConvolution(firstPass, source, sourceRectangle, startY, endY, kernelX);
this.ApplyConvolution(target, firstPass, sourceRectangle, startY, endY, kernelY);
}
/// <summary>
/// Applies the process to the specified portion of the specified <see cref="ImageBase"/> at the specified location
/// and with the specified size.
/// </summary>
/// <param name="target">Target image to apply the process to.</param>
/// <param name="source">The source image. Cannot be null.</param>
/// <param name="sourceRectangle">
/// The <see cref="Rectangle"/> structure that specifies the portion of the image object to draw.
/// </param>
/// <param name="startY">The index of the row within the source image to start processing.</param>
/// <param name="endY">The index of the row within the source image to end processing.</param>
/// <param name="kernel">The kernel operator.</param>
private void ApplyConvolution(
ImageBase target,
ImageBase source,
Rectangle sourceRectangle,
int startY,
int endY,
float[,] kernel)
{
int kernelHeight = kernel.GetLength(0);
int kernelWidth = kernel.GetLength(1);
int radiusY = kernelHeight >> 1;
int radiusX = kernelWidth >> 1;
int sourceY = sourceRectangle.Y;
int sourceBottom = sourceRectangle.Bottom;
int startX = sourceRectangle.X;
int endX = sourceRectangle.Right;
int maxY = sourceBottom - 1;
int maxX = endX - 1;
Parallel.For(
startY,
endY,
y =>
{
if (y >= sourceY && y < sourceBottom)
{
for (int x = startX; x < endX; x++)
{
float red = 0;
float green = 0;
float blue = 0;
float alpha = 0;
// Apply each matrix multiplier to the color components for each pixel.
for (int fy = 0; fy < kernelHeight; fy++)
{
int fyr = fy - radiusY;
int offsetY = y + fyr;
offsetY = offsetY.Clamp(0, maxY);
for (int fx = 0; fx < kernelWidth; fx++)
{
int fxr = fx - radiusX;
int offsetX = x + fxr;
offsetX = offsetX.Clamp(0, maxX);
Color currentColor = source[offsetX, offsetY];
red += kernel[fy, fx] * currentColor.R;
green += kernel[fy, fx] * currentColor.G;
blue += kernel[fy, fx] * currentColor.B;
alpha += kernel[fy, fx] * currentColor.A;
}
}
target[x, y] = new Color(red, green, blue, alpha);
}
}
});
}
这里是10 sigma代码的输出。