相关:Combine logs and query in ELK
我们正在设置ELK,并希望在Kibana 4中创建可视化。 这里的问题是我们希望将两种不同类型的消息联系起来。
简化:
这两条消息在elasticsearch中共享相同的索引。
正如你所看到的那样,我们试图在不考虑common_id_number的情况下绘图,但似乎我们必须使用它。不过我们还不知道。
任何帮助?
修改
这些是ES模板中的相关字段定义:
"URIHost" : {
"type" : "string",
"norms" : {
"enabled" : false
},
"fields" : {
"raw" : {
"type" : "string",
"index" : "not_analyzed",
"ignore_above" : 256
}
}
},
"Type" : {
"type" : "string",
"norms" : {
"enabled" : false
},
"fields" : {
"raw" : {
"type" : "string",
"index" : "not_analyzed",
"ignore_above" : 256
}
}
},
"SessionID" : {
"type" : "long"
},
"Bytes" : {
"type" : "long"
},
"BytesReceived" : {
"type" : "long"
},
"BytesSent" : {
"type" : "long"
},
这是一个TRAFFIC类型,编辑过的文件:
{
"_index": "logstash-2015.11.05",
"_type": "paloalto",
"_id": "AVDZqdBjpQiRid-uxPjE",
"_score": null,
"_source": {
"@version": "1",
"@timestamp": "2015-11-05T21:59:55.543Z",
"syslog_severity_code": 5,
"syslog_facility_code": 1,
"syslog_timestamp": "Nov 5 22:59:58",
"Type": "TRAFFIC",
"SessionID": 21713,
"Bytes": 939,
"BytesSent": 480,
"BytesReceived": 459,
},
"fields": {
"@timestamp": [
1446760795543
]
},
"sort": [
1446760795543
]
}
这是一个THREAT类型的文档:
{
"_index": "logstash-2015.11.05",
"_type": "paloalto",
"_id": "AVDZqVNIpQiRid-uxPjC",
"_score": null,
"_source": {
"@version": "1",
"@timestamp": "2015-11-05T21:59:23.440Z",
"syslog_severity_code": 5,
"syslog_facility_code": 1,
"syslog_timestamp": "Nov 5 22:59:26",
"Type": "THREAT",
"SessionID": 21713,
"URIHost": "whatever.nevermind.com",
"URIPath": "/connectiontest.html"
},
"fields": {
"@timestamp": [
1446760763440
]
},
"sort": [
1446760763440
]
}
这是logstash“过滤器”配置:
filter {
if [type] == "paloalto" {
syslog_pri {
remove_field => [ "syslog_facility", "syslog_severity" ]
}
grok {
match => {
"message" => "%{SYSLOGTIMESTAMP:syslog_timestamp} %{HOSTNAME:hostname} %{INT},%{YEAR}/%{MONTHNUM}/%{MONTHDAY} %{TIME},%{INT},%{WORD:Type},%{GREEDYDATA:log}"
}
remove_field => [ "message" ]
}
if [Type] == "THREAT" {
csv {
source => "log"
columns => [ "Threat_OR_ContentType", "ConfigVersion", "GenerateTime", "SourceAddress", "DestinationAddress", "NATSourceIP", "NATDestinationIP", "Rule", "SourceUser", "DestinationUser", "Application", "VirtualSystem", "SourceZone", "DestinationZone", "InboundInterface", "OutboundInterface", "LogAction", "TimeLogged", "SessionID", "RepeatCount", "SourcePort", "DestinationPort", "NATSourcePort", "NATDestinationPort", "Flags", "IPProtocol", "Action", "URL", "Threat_OR_ContentName", "reportid", "Category", "Severity", "Direction", "seqno", "actionflags", "SourceCountry", "DestinationCountry", "cpadding", "contenttype", "pcap_id", "filedigest", "cloud", "url_idx", "user_agent", "filetype", "xff", "referer", "sender", "subject", "recipient" ]
remove_field => [ "log" ]
}
mutate {
convert => {
"SessionID" => "integer"
"SourcePort" => "integer"
"DestinationPort" => "integer"
"NATSourcePort" => "integer"
"NATDestinationPort" => "integer"
}
remove_field => [ "ConfigVersion", "GenerateTime", "VirtualSystem", "InboundInterface", "OutboundInterface", "LogAction", "TimeLogged", "RepeatCount", "Flags", "Action", "reportid", "Severity", "seqno", "actionflags", "cpadding", "pcap_id", "filedigest", "recipient" ]
}
grok {
match => {
"URL" => "%{URIHOST:URIHost}%{URIPATH:URIPath}(%{URIPARAM:URIParam})?"
}
remove_field => [ "URL" ]
}
}
else if [Type] == "TRAFFIC" {
csv {
source => "log"
columns => [ "Threat_OR_ContentType", "ConfigVersion", "GenerateTime", "SourceAddress", "DestinationAddress", "NATSourceIP", "NATDestinationIP", "Rule", "SourceUser", "DestinationUser", "Application", "VirtualSystem", "SourceZone", "DestinationZone", "InboundInterface", "OutboundInterface", "LogAction", "TimeLogged", "SessionID", "RepeatCount", "SourcePort", "DestinationPort", "NATSourcePort", "NATDestinationPort", "Flags", "IPProtocol", "Action", "Bytes", "BytesSent", "BytesReceived", "Packets", "StartTime", "ElapsedTimeInSecs", "Category", "Padding", "seqno", "actionflags", "SourceCountry", "DestinationCountry", "cpadding", "pkts_sent", "pkts_received", "session_end_reason" ]
remove_field => [ "log" ]
}
mutate {
convert => {
"SessionID" => "integer"
"SourcePort" => "integer"
"DestinationPort" => "integer"
"NATSourcePort" => "integer"
"NATDestinationPort" => "integer"
"Bytes" => "integer"
"BytesSent" => "integer"
"BytesReceived" => "integer"
"ElapsedTimeInSecs" => "integer"
}
remove_field => [ "ConfigVersion", "GenerateTime", "VirtualSystem", "InboundInterface", "OutboundInterface", "LogAction", "TimeLogged", "RepeatCount", "Flags", "Action", "Packets", "StartTime", "seqno", "actionflags", "cpadding", "pcap_id", "filedigest", "recipient" ]
}
}
date {
match => [ "syslog_timastamp", "MMM d HH:mm:ss", "MMM dd HH:mm:ss" ]
timezone => "CET"
remove_field => [ "syslog_timestamp" ]
}
}
}
我们要做的是将URIHost术语可视化为X轴,Bytes,BytesSent和BytesReceived总和为Y轴。
答案 0 :(得分:3)
我认为您可以使用aggregate
filter来执行您的任务。 aggregate
过滤器支持基于公共字段值将多个日志行聚合到一个单个事件中。在您的情况下,我们将要使用的公共字段是SessionID
字段。
然后我们需要另一个字段来检测第一个事件与应该聚合的第二个/最后一个事件。在您的情况下,这将是Type
字段。
您需要更改当前配置:
filter {
... all other filters
if [Type] == "THREAT" {
... all other filters
aggregate {
task_id => "%{SessionID}"
code => "map['URIHost'] = event['URIHost']; map['URIPath'] = event['URIPath']"
}
}
else if [Type] == "TRAFFIC" {
... all other filters
aggregate {
task_id => "%{SessionID}"
code => "event['URIHost'] = map['URIHost']; event['URIPath'] = map['URIPath']"
end_of_task => true
timeout => 120
}
}
}
一般的想法是,当Logstash遇到THREAT
日志时,它会暂时将URIHost
和URIPath
存储在内存中的事件映射中,然后当TRAFFIC
时登录后,URIHost
和URIPath
字段将添加到活动中。如果需要,您也可以复制其他字段。您还可以调整超时(以秒为单位),具体取决于您希望TRAFFIC
事件在上一次THREAT
事件后进入的时间长度。
最后,您将获得包含来自THREAT
和TRAFFIC
日志行的数据的文档,您可以轻松创建显示每URIHost
个字节数的可视化,如图所示在你的截图上。