我已尝试使用 countDistinct 函数,该函数应根据DataBrick's blog在Spark 1.5中提供。但是,我得到以下例外:
Exception in thread "main" org.apache.spark.sql.AnalysisException: undefined function countDistinct;
我发现在Spark developers' mail list上他们建议使用 count 和 distinct 函数来获得应该由生成的相同结果countDistinct :
count(distinct <columnName>)
// Instead
countDistinct(<columnName>)
因为我从聚合函数名称列表中动态构建聚合表达式,所以我不喜欢不需要处理任何特殊情况。
那么,是否有可能通过以下方式统一它:
手动注册已在Spark CountDistinct函数中实现,该函数可能来自以下导入:
import org.apache.spark.sql.catalyst.expressions。{CountDistinctFunction,CountDistinct}
或以其他方式进行?
编辑: 示例(删除了一些本地引用和不必要的代码):
import org.apache.spark.SparkContext
import org.apache.spark.sql.{Column, SQLContext, DataFrame}
import org.apache.spark.sql.functions._
import scala.collection.mutable.ListBuffer
class Flattener(sc: SparkContext) {
val sqlContext = new SQLContext(sc)
def flatTable(data: DataFrame, groupField: String): DataFrame = {
val flatteningExpressions = data.columns.zip(TypeRecognizer.getTypes(data)).
flatMap(x => getFlatteningExpressions(x._1, x._2)).toList
data.groupBy(groupField).agg (
expr(s"count($groupField) as groupSize"),
flatteningExpressions:_*
)
}
private def getFlatteningExpressions(fieldName: String, fieldType: DType): List[Column] = {
val aggFuncs = getAggregationFunctons(fieldType)
aggFuncs.map(f => expr(s"$f($fieldName) as ${fieldName}_$f"))
}
private def getAggregationFunctons(fieldType: DType): List[String] = {
val aggFuncs = new ListBuffer[String]()
if(fieldType == DType.NUMERIC) {
aggFuncs += ("avg", "min", "max")
}
if(fieldType == DType.CATEGORY) {
aggFuncs += "countDistinct"
}
aggFuncs.toList
}
}
答案 0 :(得分:2)
不确定我是否真的了解您的问题,但这是countDistinct聚合函数的示例:
val values = Array((1, 2), (1, 3), (2, 2), (1, 2))
val myDf = sc.parallelize(values).toDF("id", "foo")
import org.apache.spark.sql.functions.countDistinct
myDf.groupBy('id).agg(countDistinct('foo) as 'distinctFoo) show
/**
+---+-------------------+
| id|COUNT(DISTINCT foo)|
+---+-------------------+
| 1| 2|
| 2| 1|
+---+-------------------+
*/
答案 1 :(得分:2)
countDistinct可以以两种不同的形式使用:
df.groupBy("A").agg(expr("count(distinct B)")
或
df.groupBy("A").agg(countDistinct("B"))
但是,当您想在自定义UDAF(在Spark 1.5中实现为UserDefinedAggregateFunction)的同一列上使用它们时,这两种方法都不起作用:
// Assume that we have already implemented and registered StdDev UDAF
df.groupBy("A").agg(countDistinct("B"), expr("StdDev(B)"))
// Will cause
Exception in thread "main" org.apache.spark.sql.AnalysisException: StdDev is implemented based on the new Aggregate Function interface and it cannot be used with functions implemented based on the old Aggregate Function interface.;
由于这些限制,它看起来最合理的是将countDistinct实现为UDAF应该允许以相同的方式处理所有函数以及使用countDistinct和其他UDAF。
示例实现可能如下所示:
import org.apache.spark.sql.Row
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types._
class CountDistinct extends UserDefinedAggregateFunction{
override def inputSchema: StructType = StructType(StructField("value", StringType) :: Nil)
override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
buffer(0) = (buffer.getSeq[String](0).toSet + input.getString(0)).toSeq
}
override def bufferSchema: StructType = StructType(
StructField("items", ArrayType(StringType, true)) :: Nil
)
override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
buffer1(0) = (buffer1.getSeq[String](0).toSet ++ buffer2.getSeq[String](0).toSet).toSeq
}
override def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer(0) = Seq[String]()
}
override def deterministic: Boolean = true
override def evaluate(buffer: Row): Any = {
buffer.getSeq[String](0).length
}
override def dataType: DataType = IntegerType
}