我打算将AVR-Crypto的SHA-1 implementation用于HMAC。但是,我似乎无法生成正确的SHA-1总和。
例如,如果我使用以下
调用该函数Entity1 (**Entity1No**, ....)
Entity2 (**Entity2No**, ...)
Entity1_Entity2 (***Entity1No***, ***Entity2No***, ....)
FOREIGN KEY (Entity1No) REFERENCES (Entity1)
FOREIGN KEY (Entity2No) REFERENCES (Entity2)
我得到 unsigned char sha1sum[20];
char *msg = "FFFFFFFFFF";
sha1( sha1sum, msg, strlen(msg));
而不是预期的000000000000000000002C002312290000000029
。有谁知道什么可能是错的?这是AVR-Crypto的实现
c1bb92851109fe950a2655fa1d4ba1d04719f6fb
这是标题:
#include <string.h> /* memcpy & co */
#include <stdint.h>
#include "config.h"
#include "debug.h"
#include "sha1.h"
#ifdef DEBUG
# undef DEBUG
#endif
#include "cli.h"
#define LITTLE_ENDIAN
/********************************************************************************************************/
/**
* \brief initialises given SHA-1 context
*
*/
void sha1_init(sha1_ctx_t *state){
DEBUG_S("\r\nSHA1_INIT");
state->h[0] = 0x67452301;
state->h[1] = 0xefcdab89;
state->h[2] = 0x98badcfe;
state->h[3] = 0x10325476;
state->h[4] = 0xc3d2e1f0;
state->length = 0;
}
/********************************************************************************************************/
/* some helping functions */
uint32_t rotl32(uint32_t n, uint8_t bits){
return ((n<<bits) | (n>>(32-bits)));
}
uint32_t change_endian32(uint32_t x){
return (((x)<<24) | ((x)>>24) | (((x)& 0x0000ff00)<<8) | (((x)& 0x00ff0000)>>8));
}
/* three SHA-1 inner functions */
uint32_t ch(uint32_t x, uint32_t y, uint32_t z){
DEBUG_S("\r\nCH");
return ((x&y)^((~x)&z));
}
uint32_t maj(uint32_t x, uint32_t y, uint32_t z){
DEBUG_S("\r\nMAJ");
return ((x&y)^(x&z)^(y&z));
}
uint32_t parity(uint32_t x, uint32_t y, uint32_t z){
DEBUG_S("\r\nPARITY");
return ((x^y)^z);
}
/********************************************************************************************************/
/**
* \brief "add" a block to the hash
* This is the core function of the hash algorithm. To understand how it's working
* and what thoese variables do, take a look at FIPS-182. This is an "alternativ" implementation
*/
#define MASK 0x0000000f
typedef uint32_t (*pf_t)(uint32_t x, uint32_t y, uint32_t z);
void sha1_nextBlock (sha1_ctx_t *state, const void *block){
uint32_t a[5];
uint32_t w[16];
uint32_t temp;
uint8_t t,s,fi, fib;
pf_t f[] = {ch,parity,maj,parity};
uint32_t k[4]={ 0x5a827999,
0x6ed9eba1,
0x8f1bbcdc,
0xca62c1d6};
/* load the w array (changing the endian and so) */
for(t=0; t<16; ++t){
w[t] = change_endian32(((uint32_t*)block)[t]);
}
#if DEBUG
uint8_t dbgi;
for(dbgi=0; dbgi<16; ++dbgi){
/*
DEBUG_S("\n\rBlock:");
DEBUG_B(dbgi);
DEBUG_C(':');
*/
cli_putstr_P(PSTR("\r\nBlock:"));
cli_hexdump(&dbgi, 1);
cli_putc(':');
cli_hexdump(&(w[dbgi]) ,4);
}
#endif
/* load the state */
memcpy(a, state->h, 5*sizeof(uint32_t));
/* the fun stuff */
for(fi=0,fib=0,t=0; t<=79; ++t){
s = t & MASK;
if(t>=16){
#if DEBUG
DEBUG_S("\r\n ws = "); cli_hexdump(&(w[s]), 4);
#endif
w[s] = rotl32( w[(s+13)&MASK] ^ w[(s+8)&MASK] ^
w[(s+ 2)&MASK] ^ w[s] ,1);
#ifdef DEBUG
DEBUG_S(" --> ws = "); cli_hexdump(&(w[s]), 4);
#endif
}
uint32_t dtemp;
temp = rotl32(a[0],5) + (dtemp=f[fi](a[1],a[2],a[3])) + a[4] + k[fi] + w[s];
memmove(&(a[1]), &(a[0]), 4*sizeof(uint32_t)); /* e=d; d=c; c=b; b=a; */
a[0] = temp;
a[2] = rotl32(a[2],30); /* we might also do rotr32(c,2) */
fib++;
if(fib==20){
fib=0;
fi = (fi+1)%4;
}
#if DEBUG
/* debug dump */
DEBUG_S("\r\nt = "); DEBUG_B(t);
DEBUG_S("; a[]: ");
cli_hexdump(a, 5*4);
DEBUG_S("; k = ");
cli_hexdump(&(k[t/20]), 4);
DEBUG_S("; f(b,c,d) = ");
cli_hexdump(&dtemp, 4);
#endif
}
/* update the state */
for(t=0; t<5; ++t){
state->h[t] += a[t];
}
state->length += 512;
}
/********************************************************************************************************/
void sha1_lastBlock(sha1_ctx_t *state, const void *block, uint16_t length){
uint8_t lb[SHA1_BLOCK_BYTES]; /* local block */
while(length>=SHA1_BLOCK_BITS){
sha1_nextBlock(state, block);
length -= SHA1_BLOCK_BITS;
block = (uint8_t*)block + SHA1_BLOCK_BYTES;
}
state->length += length;
memset(lb, 0, SHA1_BLOCK_BYTES);
memcpy (lb, block, (length+7)>>3);
/* set the final one bit */
lb[length>>3] |= 0x80>>(length & 0x07);
if (length>512-64-1){ /* not enouth space for 64bit length value */
sha1_nextBlock(state, lb);
state->length -= 512;
memset(lb, 0, SHA1_BLOCK_BYTES);
}
/* store the 64bit length value */
#if defined LITTLE_ENDIAN
/* this is now rolled up */
uint8_t i;
for (i=0; i<8; ++i){
lb[56+i] = ((uint8_t*)&(state->length))[7-i];
}
#elif defined BIG_ENDIAN
*((uint64_t)&(lb[56])) = state->length;
#endif
sha1_nextBlock(state, lb);
}
/********************************************************************************************************/
void sha1_ctx2hash (void *dest, sha1_ctx_t *state){
#if defined LITTLE_ENDIAN
uint8_t i;
for(i=0; i<5; ++i){
((uint32_t*)dest)[i] = change_endian32(state->h[i]);
}
#elif BIG_ENDIAN
if (dest != state->h)
memcpy(dest, state->h, SHA1_HASH_BITS/8);
#else
# error unsupported endian type!
#endif
}
/********************************************************************************************************/
/**
*
*
*/
void sha1 (void *dest, const void *msg, uint32_t length){
sha1_ctx_t s;
DEBUG_S("\r\nBLA BLUB");
sha1_init(&s);
while(length & (~0x0001ff)){ /* length>=512 */
DEBUG_S("\r\none block");
sha1_nextBlock(&s, msg);
msg = (uint8_t*)msg + SHA1_BLOCK_BITS/8; /* increment pointer to next block */
length -= SHA1_BLOCK_BITS;
}
sha1_lastBlock(&s, msg, length);
sha1_ctx2hash(dest, &s);
}
更新如果我使用#ifndef SHA1_H_
#define SHA1_H_
#include "stdint.h"
/** \def SHA1_HASH_BITS
* definees the size of a SHA-1 hash in bits
*/
/** \def SHA1_HASH_BYTES
* definees the size of a SHA-1 hash in bytes
*/
/** \def SHA1_BLOCK_BITS
* definees the size of a SHA-1 input block in bits
*/
/** \def SHA1_BLOCK_BYTES
* definees the size of a SHA-1 input block in bytes
*/
#define SHA1_HASH_BITS 160
#define SHA1_HASH_BYTES (SHA1_HASH_BITS/8)
#define SHA1_BLOCK_BITS 512
#define SHA1_BLOCK_BYTES (SHA1_BLOCK_BITS/8)
/** \typedef sha1_ctx_t
* \brief SHA-1 context type
*
* A vatiable of this type may hold the state of a SHA-1 hashing process
*/
typedef struct {
uint32_t h[5];
// uint64_t length;
uint8_t length;
} sha1_ctx_t;
/** \typedef sha1_hash_t
* \brief hash value type
* A variable of this type may hold a SHA-1 hash value
*/
/*
typedef uint8_t sha1_hash_t[SHA1_HASH_BITS/8];
*/
/** \fn sha1_init(sha1_ctx_t *state)
* \brief initializes a SHA-1 context
* This function sets a ::sha1_ctx_t variable to the initialization vector
* for SHA-1 hashing.
* \param state pointer to the SHA-1 context variable
*/
void sha1_init(sha1_ctx_t *state);
/** \fn sha1_nextBlock(sha1_ctx_t *state, const void *block)
* \brief process one input block
* This function processes one input block and updates the hash context
* accordingly
* \param state pointer to the state variable to update
* \param block pointer to the message block to process
*/
void sha1_nextBlock (sha1_ctx_t *state, const void *block);
/** \fn sha1_lastBlock(sha1_ctx_t *state, const void *block, uint16_t length_b)
* \brief processes the given block and finalizes the context
* This function processes the last block in a SHA-1 hashing process.
* The block should have a maximum length of a single input block.
* \param state pointer to the state variable to update and finalize
* \param block pointer to themessage block to process
* \param length_b length of the message block in bits
*/
void sha1_lastBlock (sha1_ctx_t *state, const void *block, uint16_t length_b);
/** \fn sha1_ctx2hash(sha1_hash_t *dest, sha1_ctx_t *state)
* \brief convert a state variable into an actual hash value
* Writes the hash value corresponding to the state to the memory pointed by dest.
* \param dest pointer to the hash value destination
* \param state pointer to the hash context
*/
void sha1_ctx2hash (void *dest, sha1_ctx_t *state);
/** \fn sha1(sha1_hash_t *dest, const void *msg, uint32_t length_b)
* \brief hashing a message which in located entirely in RAM
* This function automatically hashes a message which is entirely in RAM with
* the SHA-1 hashing algorithm.
* \param dest pointer to the hash value destination
* \param msg pointer to the message which should be hashed
* \param length_b length of the message in bits
*/
void sha1(void *dest, const void *msg, uint32_t length_b);
#endif /*SHA1_H_*/
初始化sha1sum
,则结果总和为0x00。