您好我想定义一个函数,该函数根据specified date range
返回异常值(下面定义)的图,同时绘制原始序列(以及该上下文中可能比率的帐户):
定义异常值:
anomaly <- function(x)
{ tt <- 1:length(x)
resid <- residuals(loess(x ~ tt))
resid.q <- quantile(resid,prob=c(0.25,0.75))
iqr <- diff(resid.q)
limits <- resid.q + 1.5*iqr*c(-1,1)
score <- abs(pmin((resid-limits[1])/iqr,0) + pmax((resid - limits[2])/iqr,0))
return(score)
}
# defining dates
dates <- as.POSIXct(seq(as.Date("2015-08-20"), as.Date("2015-10-08"), by = "days"))
一些数据:
a<-runif(50, 5.0, 7.5)
b<-runif(50, 4, 8)
c<-runif(50, 1, 2)
d<-runif(50, 3, 3.5)
ca<-c/a
cb<-c/b
df<-data.frame(dates,a,b,c,d,ca,cb)
介绍离群值
df[49,4]<-0
df[50,6]<-0
循环数据以查找异常
new<-lapply(df[,2:7],anomaly)
library(stringi) # binding list with differing rows
# from list to data frame
res <- as.data.frame((stri_list2matrix(new)))
# rename columns
colnames(res) <- names(new)
# depends on dates at the beginning
res<-(cbind(dates,res[,1:6]))
# melt to plot
library(reshape)
library(reshape2)
new <- melt(res , id.vars = 'dates', variable.name = 'series')
使用指定的date range
(过去4天)修改绘图:
library(ggplot2)
nrdays <- 4
a.plot<-ggplot(subset(new, new$dates >= as.POSIXct(max(new$dates)- (nrdays*60*60*24))),
aes(x=dates,y=value,colour=variable,group=variable)) +
geom_line() +
facet_grid(variable ~ ., scales = "free_y")+
ylab("Outliers")+
xlab("Date")
定义检查数据功能:
check_data <- function(df) {
if(tail(df, 1) > 0) { # check only last date
return(a.plot)
# and the corresponding original series
}
}
# check and plot data
check_data(df)
我的问题是我有数百个功能,我只想绘制outlier
发生过的地方。正如您在图表中看到的,我能够提供一个图表,该图表返回所有时间序列,包括带有异常值的序列,而不是仅发生outlier
的序列。另外,我还想报告原始系列(包括ratios
,也就是说,给定比例异常值ca
我希望得到原始系列c
和{{ 1}}}} ...我怎么能解决这个问题。因此输出可能如下:
a
including original series:
答案 0 :(得分:5)
您需要在subset
中指定只需要异常值,不等于0。
所以你可以替换
a.plot<-ggplot(subset(new, new$dates >= as.POSIXct(max(new$dates)- (nrdays*60*60*24)) & new$variable %in% new$variable[!new$value %in% 0 & new$dates >= as.POSIXct(max(new$dates)- (nrdays*60*60*24))]),
aes(x=dates,y=value,colour=variable,group=variable)) +
geom_line() +
facet_grid(variable ~ ., scales = "free_y")+
ylab("Outliers")+
xlab("Date")
这应该有所帮助。你也可以稍微清理一下,以便更具可读性
另一个选择是加入原始数据和异常值并将它们绘制在一起。首先,您创建一个data.frame,然后子集并将其传递给ggplot。 因此,在您的数据循环后,您可以执行类似这样的操作
orig <- melt(df , id.vars = 'dates', variable.name = 'series')
data.df <- merge(new, orig, by = c("dates", "variable"))
colnames(data.df)[2:4] <- c("group","index", "original")
data.df$index <- as.numeric(as.character(data.df$index)) # replace factor with numeric
nrdays <- 4
data.subs <- subset(data.df, data.df$dates >= as.POSIXct(max(data.df$dates)- (nrdays*60*60*24)) &
data.df$group %in% data.df$group[!data.df$index %in% 0 & data.df$dates >= as.POSIXct(max(data.df$dates)- (nrdays*60*60*24))])
data.subs <- melt(data.subs, id = c('dates', "group"))
a.plot<-ggplot(data.subs)+
geom_line(aes(x=dates,y=value, colour = variable, group = variable))+
facet_grid(group ~ ., scales = "free_y")+
ylab("Outliers")+
xlab("Date")
a.plot