我想基于R中的某些term network analysis plot创建一个word associations,但我不知道如何超越绘制整个术语文档矩阵:
# Network analysis
library(igraph)
# load tdm data
# create matrix
Neg.m <- as.matrix(Ntdm_nonsparse)
# to boolean matrix
Neg.m[Neg.m>=1] <- 1
# to term adjacency matrix
# %*% is product of 2 matrices
Neg.m2 <- Neg.m %*% t(Neg.m)
Neg.m2[5:10,5:10]
# build graph with igraph ####
library(igraph)
# build adjacency graph
Neg.g <- graph.adjacency(Neg.m2, weighted=TRUE, mode="undirected")
# remove loops
Neg.g <- simplify(Neg.g)
# set labels and degrees of vertices
V(Neg.g)$label <- V(Neg.g)$name
V(Neg.g)$degree <- degree(Neg.g)
# plot layout fruchterman.reingold
layout1 <- layout.fruchterman.reingold(Neg.g)
plot(Neg.g, layout=layout1, vertex.size=20,
vertex.label.color="darkred")
是否仍然将单词关联network analysis plot应用于(以及一般单词关联bar plot)以下findAssocs
数据?:
findAssocs(Ntdm, "verizon", .06)
$verizon
att switched switch wireless basket 09mbps 16mbps
0.16 0.13 0.11 0.11 0.10 0.09 0.09
32mbps 4gbs 5gbs cheaper ima landry nudge
0.09 0.09 0.09 0.09 0.09 0.09 0.09
sears wink collapsed expensive sprint -fine -law
0.09 0.09 0.08 0.08 0.08 0.07 0.07
11yrs 380 980 alltel callled candle cdma
0.07 0.07 0.07 0.07 0.07 0.07 0.07
concert consequence de-evolving dimas doria fluke left
0.07 0.07 0.07 0.07 0.07 0.07 0.07
london lulz lyingly niet outfits pocketbook puny
0.07 0.07 0.07 0.07 0.07 0.07 0.07
recentely redraw reinvesting reservoir satellite's shrimp stratosphere
0.07 0.07 0.07 0.07 0.07 0.07 0.07
strighten switchig switching undergo wheelchair wireless-never worth
0.07 0.07 0.07 0.07 0.07 0.07 0.07
yeap 1994 299 cheapest com' comin crushes
0.07 0.06 0.06 0.06 0.06 0.06 0.06
hhahahahahah mache metro metro-nyc must've rising sabotage
0.06 0.06 0.06 0.06 0.06 0.06 0.06
wholeheartedly
0.06
换句话说,我想想象一个特定关键字与R中其他关键字的关联,但我不知道如何。
答案 0 :(得分:1)
按照?word_network_plot(包qdap)中的示例进行操作。