我正在尝试这个experiment,旨在测量通用Linux上的代码执行时间。但是,在我insmod
和dmesg
之后,我看到了insmod: page allocation failure
和unable to allocate memory for times [25]
。谁能给我一些想法?这段代码有什么问题?它似乎在尝试malloc时遇到了麻烦。
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/hardirq.h>
#include <linux/preempt.h>
#include <linux/sched.h>
#include <linux/slab.h>
#define SIZE_OF_STAT 100000
#define BOUND_OF_LOOP 1000
#define UINT64_MAX (18446744073709551615ULL)
void inline measured_function(volatile int *var)
{
(*var) = 1;
}
void inline Filltimes(uint64_t **times) {
unsigned long flags;
int i, j;
uint64_t start, end;
unsigned cycles_low, cycles_high, cycles_low1, cycles_high1;
volatile int variable = 0;
asm volatile ("CPUID\n\t"
"RDTSC\n\t"
"mov %%edx, %0\n\t"
"mov %%eax, %1\n\t": "=r" (cycles_high), "=r" (cycles_low):: "%rax", "%rbx", "%rcx", "%rdx");
asm volatile ("RDTSCP\n\t"
"mov %%edx, %0\n\t"
"mov %%eax, %1\n\t": "=r" (cycles_high), "=r" (cycles_low):: "%rax", "%rbx", "%rcx", "%rdx");
asm volatile ("CPUID\n\t"
"RDTSC\n\t"
"mov %%edx, %0\n\t"
"mov %%eax, %1\n\t": "=r" (cycles_high), "=r" (cycles_low):: "%rax", "%rbx", "%rcx", "%rdx");
asm volatile ("RDTSCP\n\t"
"mov %%edx, %0\n\t"
"mov %%eax, %1\n\t"
"CPUID\n\t": "=r" (cycles_high), "=r" (cycles_low):: "%rax", "%rbx", "%rcx", "%rdx");
for (j=0; j<BOUND_OF_LOOP; j++) {
for (i =0; i<SIZE_OF_STAT; i++) {
variable = 0;
preempt_disable();
raw_local_irq_save(flags);
asm volatile (
"CPUID\n\t"
"RDTSC\n\t"
"mov %%edx, %0\n\t"
"mov %%eax, %1\n\t": "=r" (cycles_high), "=r" (cycles_low):: "%rax", "%rbx", "%rcx", "%rdx");
/*call the function to measure here*/
measured_function(&variable);
asm volatile(
"RDTSCP\n\t"
"mov %%edx, %0\n\t"
"mov %%eax, %1\n\t"
"CPUID\n\t": "=r" (cycles_high1), "=r" (cycles_low1):: "%rax", "%rbx", "%rcx", "%rdx");
raw_local_irq_restore(flags);
preempt_enable();
start = ( ((uint64_t)cycles_high << 32) | cycles_low );
end = ( ((uint64_t)cycles_high1 << 32) | cycles_low1 );
if ( (end - start) < 0) {
printk(KERN_ERR "\n\n>>>>>>>>>>>>>> CRITICAL ERROR IN TAKING THE TIME!!!!!!\n loop(%d) stat(%d) start = %llu, end = %llu, variable = %u\n", j, i, start, end, variable);
times[j][i] = 0;
}
else
{
times[j][i] = end - start;
}
}
}
return;
}
uint64_t var_calc(uint64_t *inputs, int size)
{
int i;
uint64_t acc = 0, previous = 0, temp_var = 0;
for (i=0; i< size; i++) {
if (acc < previous) goto overflow;
previous = acc;
acc += inputs[i];
}
acc = acc * acc;
if (acc < previous) goto overflow;
previous = 0;
for (i=0; i< size; i++){
if (temp_var < previous) goto overflow;
previous = temp_var;
temp_var+= (inputs[i]*inputs[i]);
}
temp_var = temp_var * size;
if (temp_var < previous) goto overflow;
temp_var =(temp_var - acc)/(((uint64_t)(size))*((uint64_t)(size)));
return (temp_var);
overflow:
printk(KERN_ERR "\n\n>>>>>>>>>>>>>> CRITICAL OVERFLOW ERROR IN var_calc!!!!!!\n\n");
return -EINVAL;
}
static int __init hello_start(void)
{
int i = 0, j = 0, spurious = 0, k =0;
uint64_t **times;
uint64_t *variances;
uint64_t *min_values;
uint64_t max_dev = 0, min_time = 0, max_time = 0, prev_min =0, tot_var=0, max_dev_all=0, var_of_vars=0, var_of_mins=0;
printk(KERN_INFO "Loading hello module...\n");
times = kmalloc(BOUND_OF_LOOP*sizeof(uint64_t*), GFP_KERNEL);
if (!times) {
printk(KERN_ERR "unable to allocate memory for times\n");
return 0;
}
for (j=0; j<BOUND_OF_LOOP; j++) {
times[j] = kmalloc(SIZE_OF_STAT*sizeof(uint64_t), GFP_KERNEL);
if (!times[j]) {
printk(KERN_ERR "unable to allocate memory for times[%d]\n", j);
for (k=0; k<j; k++)
kfree(times[k]);
return 0;
}
}
variances = kmalloc(BOUND_OF_LOOP*sizeof(uint64_t), GFP_KERNEL);
if (!variances) {
printk(KERN_ERR "unable to allocate memory for variances\n");
return 0;
}
min_values = kmalloc(BOUND_OF_LOOP*sizeof(uint64_t), GFP_KERNEL);
if (!min_values) {
printk(KERN_ERR "unable to allocate memory for min_values\n");
return 0;
}
Filltimes(times);
for (j=0; j<BOUND_OF_LOOP; j++) {
max_dev = 0;
min_time = 0;
max_time = 0;
for (i =0; i<SIZE_OF_STAT; i++) {
if ((min_time == 0)||(min_time > times[j][i]))
min_time = times[j][i];
if (max_time < times[j][i])
max_time = times[j][i];
}
max_dev = max_time - min_time;
min_values[j] = min_time;
if ((prev_min != 0) && (prev_min > min_time))
spurious++;
if (max_dev > max_dev_all)
max_dev_all = max_dev;
variances[j] = var_calc(times[j], SIZE_OF_STAT);
tot_var += variances[j];
printk(KERN_ERR "loop_size:%d >>>> variance(cycles): %llu; max_deviation: %llu ;min time: %llu", j, variances[j], max_dev, min_time);
prev_min = min_time;
}
var_of_vars = var_calc(variances, BOUND_OF_LOOP);
var_of_mins = var_calc(min_values, BOUND_OF_LOOP);
printk(KERN_ERR "\n total number of spurious min values = %d", spurious);
printk(KERN_ERR "\n total variance = %llu", (tot_var/BOUND_OF_LOOP));
printk(KERN_ERR "\n absolute max deviation = %llu", max_dev_all);
printk(KERN_ERR "\n variance of variances = %llu", var_of_vars);
printk(KERN_ERR "\n variance of minimum values = %llu", var_of_mins);
for (j=0; j<BOUND_OF_LOOP; j++) {
kfree(times[j]);
}
kfree(times);
kfree(variances);
kfree(min_values);
return 0;
}
static void __exit hello_end(void)
{
printk(KERN_INFO "Goodbye Mr.\n");
}
module_init(hello_start);
module_exit(hello_end);