我试图通过Mark the Ballot用一段jags代码复制模拟,但jags正在向我发送错误信息..
如果我理解正确的话,它应该在某处为每一方索引房屋效应时出现问题,但我找不到它,因为该节点似乎已被编入索引。有谁知道错误是什么样的?
model <- jags.model(textConnection(model),
data = data,
n.chains=4,
n.adapt=10000
Compiling model graph
Resolving undeclared variables
Allocating nodes
Deleting model
Error in jags.model(textConnection(model2), data = data, n.chains = 4, :
RUNTIME ERROR:
Cannot insert node into houseEffect[1...4,2]. Dimension mismatch
model <- '
model {
for(poll in 1:NUMPOLLS) {
adjusted_poll[poll, 1:PARTIES] <- walk[pollDay[poll], 1:PARTIES] +
houseEffect[house[poll], 1:PARTIES]
primaryVotes[poll, 1:PARTIES] ~ dmulti(adjusted_poll[poll, 1:PARTIES], n[poll])
}
tightness <- 50000
discontinuity_tightness <- 50
for(day in 2:(discontinuity-1)) {
multinomial[day, 1:PARTIES] <- walk[day-1, 1:PARTIES] * tightness
walk[day, 1:PARTIES] ~ ddirch(multinomial[day, 1:PARTIES])
}
multinomial[discontinuity, 1:PARTIES] <- walk[discontinuity-1, 1:PARTIES] * discontinuity_tightness
walk[discontinuity, 1:PARTIES] ~ ddirch(multinomial[discontinuity, 1:PARTIES])
for(day in discontinuity+1:PERIOD) {
multinomial[day, 1:PARTIES] <- walk[day-1, 1:PARTIES] * tightness
walk[day, 1:PARTIES] ~ ddirch(multinomial[day, 1:PARTIES])
}
for (party in 1:2) {
alpha[party] ~ dunif(250, 600)
}
for (party in 3:PARTIES) {
alpha[party] ~ dunif(10, 250)
}
walk[1, 1:PARTIES] ~ ddirch(alpha[])
for(day in 1:PERIOD) {
CoalitionTPP[day] <- sum(walk[day, 1:PARTIES] *
preference_flows[1:PARTIES])
}
for (party in 2:PARTIES) {
houseEffect[1, party] <- -sum( houseEffect[2:HOUSECOUNT, party] )
}
for(house in 1:HOUSECOUNT) {
houseEffect[house, 1] <- -sum( houseEffect[house, 2:PARTIES] )
}
# but note, we do not apply a double constraint to houseEffect[1, 1]
monitorHouseEffectOneSumParties <- sum(houseEffect[1, 1:PARTIES])
monitorHouseEffectOneSumHouses <- sum(houseEffect[1:HOUSECOUNT, 1])
for (party in 2:PARTIES) {
for(house in 2:HOUSECOUNT) {
houseEffect[house, party] ~ dnorm(0, pow(0.1, -2))
} } }
'
preference_flows <- c(1.0, 0.0, 0.1697, 0.533)
PERIOD = 26
HOUSECOUNT = 5
NUMPOLLS = 35
PARTIES = 4
discontinuity = 20
pollDay = c(1, 1, 2, 2, 6, 8, 8, 9, 9, 10, 10, 10, 10, 12, 12, 13, 14, 14, 16, 16, 17, 18, 19, 19, 20, 21, 22, 22, 24, 24, 24, 24, 24, 26, 26)
house = c(1, 2, 3, 4, 3, 3, 5, 1, 2, 1, 3, 4, 5, 3, 4, 2, 3, 4, 3, 4, 5, 3, 2, 4, 3, 5, 3, 4, 1, 2, 3, 4, 5, 3, 4)
n = c(1400, 1400, 1000, 1155, 1000, 1000, 3690, 1400, 1400, 1400, 1000, 1177, 3499, 1000, 1180, 1400, 1000, 1161, 1000, 1148, 2419, 1000, 1386, 1148, 1000, 2532, 1000, 1172, 1682, 1402, 1000, 1160, 3183, 1000, 1169)
preference_flows = c(1.0000, 0.0000, 0.1697, 0.5330)
primaryVotes = read.csv(text = c(
'Coalition, Labor, Greens, Other
532,574,154,140
560,518,168,154
350,410,115,125
439,450,139,127
385,385,95,135
375,395,120,110
1465,1483,417,325
504,602,154,140
532,560,154,154
504,602,154,140
355,415,120,110
412,483,141,141
1345,1450,392,312
375,405,100,120
448,448,142,142
588,504,168,140
390,380,115,115
441,453,139,128
380,400,110,110
471,425,126,126
957,979,278,205
405,360,125,110
546,532,182,126
471,413,126,138
385,380,120,115
1008,995,301,228
400,375,115,110
457,410,141,164
690,656,185,151
603,491,182,126
415,355,125,105
464,429,139,128
1307,1218,385,273
410,370,130,90
479,433,152,105'), sep=",")
data = list(PERIOD = PERIOD,
HOUSECOUNT = HOUSECOUNT,
NUMPOLLS = NUMPOLLS,
PARTIES = PARTIES,
primaryVotes = primaryVotes,
pollDay = pollDay,
house = house,
discontinuity = discontinuity,
# manage rounding issues with df$Sample ...
n = rowSums(primaryVotes),
preference_flows = preference_flows
)
print(data)
答案 0 :(得分:4)
问题在于您将房屋作为参数传递给模型,并且您在循环中使用房屋变量。 JAGS 4.0.1很困惑。如果你重新编码以取代&#34; house&#34;在(例如)&#34; h&#34;它应该工作......例子如下......
for (h in 2:HOUSECOUNT) {
for (p in 2:PARTIES) {
# vague priors ...
houseEffect[h, p] ~ dnorm(0, pow(0.1, -2))
}
}
for (p in 2:PARTIES) {
houseEffect[1, p] <- -sum( houseEffect[2:HOUSECOUNT, p] )
}
for(h in 1:HOUSECOUNT) {
houseEffect[h, 1] <- -sum( houseEffect[h, 2:PARTIES] )
}