按时间间隔创建月平均值

时间:2015-10-31 03:58:37

标签: r date time average intervals

很抱歉,如果已发布,但我看起来很辛苦,找不到任何东西。

我正在进行为期30年的月度温度观测,包括1960年1月至1989年12月。它看起来像这样:

> head(df)
        date     temp
1 1960-01-01 22.92235
2 1960-02-01 23.07059
3 1960-03-01 23.10941
4 1960-04-01 20.78353
5 1960-05-01 17.45176
6 1960-06-01 17.31765

首先,我需要做的是在整个时期内平均所有的游戏,费城,游行等。

然后,我想在特定的时间段(3年,5年,10年等)做同样的事情。

例如,

  • 1960年至1964年间所有jan,feb,mar等的平均值;
  • 1965年至1969年间所有jan,feb,mar等的平均值;
  • 等等。

最终结果将包括月份,期间和温度,如下所示:

Month    Period Temp
  Jan 1960-1989  17
  Feb 1960-1989  12
  Mar 1960-1989   7
  Apr 1960-1989   9
  May 1960-1989  15
  Jun 1960-1989  12
  Jul 1960-1989  17
  Aug 1960-1989  22
  Sep 1960-1989  21
  Oct 1960-1989  21
  Nov 1960-1989  18
  Dec 1960-1989  17
  Jan 1960-1964  17
  Feb 1960-1964  12
  Mar 1960-1964   7
  Apr 1960-1964   9
  May 1960-1964   9
  Jun 1960-1964  11
  Jul 1960-1964  14
  Aug 1960-1964  18
  Sep 1960-1964  13
  Oct 1960-1964  12
  Nov 1960-1964  17
  Dec 1960-1964  11

关于如何做到这一点的任何想法?

如果您觉得有用,这里是我的数据集的一个克隆:

df <- structure(list(date = structure(c(-3653, -3622, -3593, -3562, 
-3532, -3501, -3471, -3440, -3409, -3379, -3348, -3318, -3287, 
-3256, -3228, -3197, -3167, -3136, -3106, -3075, -3044, -3014, 
-2983, -2953, -2922, -2891, -2863, -2832, -2802, -2771, -2741, 
-2710, -2679, -2649, -2618, -2588, -2557, -2526, -2498, -2467, 
-2437, -2406, -2376, -2345, -2314, -2284, -2253, -2223, -2192, 
-2161, -2132, -2101, -2071, -2040, -2010, -1979, -1948, -1918, 
-1887, -1857, -1826, -1795, -1767, -1736, -1706, -1675, -1645, 
-1614, -1583, -1553, -1522, -1492, -1461, -1430, -1402, -1371, 
-1341, -1310, -1280, -1249, -1218, -1188, -1157, -1127, -1096, 
-1065, -1037, -1006, -976, -945, -915, -884, -853, -823, -792, 
-762, -731, -700, -671, -640, -610, -579, -549, -518, -487, -457, 
-426, -396, -365, -334, -306, -275, -245, -214, -184, -153, -122, 
-92, -61, -31, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 
334, 365, 396, 424, 455, 485, 516, 546, 577, 608, 638, 669, 699, 
730, 761, 790, 821, 851, 882, 912, 943, 974, 1004, 1035, 1065, 
1096, 1127, 1155, 1186, 1216, 1247, 1277, 1308, 1339, 1369, 1400, 
1430, 1461, 1492, 1520, 1551, 1581, 1612, 1642, 1673, 1704, 1734, 
1765, 1795, 1826, 1857, 1885, 1916, 1946, 1977, 2007, 2038, 2069, 
2099, 2130, 2160, 2191, 2222, 2251, 2282, 2312, 2343, 2373, 2404, 
2435, 2465, 2496, 2526, 2557, 2588, 2616, 2647, 2677, 2708, 2738, 
2769, 2800, 2830, 2861, 2891, 2922, 2953, 2981, 3012, 3042, 3073, 
3103, 3134, 3165, 3195, 3226, 3256, 3287, 3318, 3346, 3377, 3407, 
3438, 3468, 3499, 3530, 3560, 3591, 3621, 3652, 3683, 3712, 3743, 
3773, 3804, 3834, 3865, 3896, 3926, 3957, 3987, 4018, 4049, 4077, 
4108, 4138, 4169, 4199, 4230, 4261, 4291, 4322, 4352, 4383, 4414, 
4442, 4473, 4503, 4534, 4564, 4595, 4626, 4656, 4687, 4717, 4748, 
4779, 4807, 4838, 4868, 4899, 4929, 4960, 4991, 5021, 5052, 5082, 
5113, 5144, 5173, 5204, 5234, 5265, 5295, 5326, 5357, 5387, 5418, 
5448, 5479, 5510, 5538, 5569, 5599, 5630, 5660, 5691, 5722, 5752, 
5783, 5813, 5844, 5875, 5903, 5934, 5964, 5995, 6025, 6056, 6087, 
6117, 6148, 6178, 6209, 6240, 6268, 6299, 6329, 6360, 6390, 6421, 
6452, 6482, 6513, 6543, 6574, 6605, 6634, 6665, 6695, 6726, 6756, 
6787, 6818, 6848, 6879, 6909, 6940, 6971, 6999, 7030, 7060, 7091, 
7121, 7152, 7183, 7213, 7244, 7274), class = "Date"), temp = c(22.9223529411765, 
23.0705882352941, 23.1094117647059, 20.7835294117647, 17.4517647058824, 
17.3176470588235, 18.0494117647059, 19.6188235294118, 21.3023529411765, 
23.1105882352941, 22.2364705882353, 22.7482352941176, 23.5870588235294, 
24.0023529411765, 23.0094117647059, 22.0176470588235, 19.4917647058824, 
18.1011764705882, 18.3164705882353, 20.0623529411765, 22.8717647058824, 
23.2576470588235, 23.68, 22.3694117647059, 22.9517647058824, 
23.6976470588235, 23.3294117647059, 20.8564705882353, 18.16, 
15.8988235294118, 15.7988235294118, 18.4176470588235, 20.8423529411765, 
20.3247058823529, 22.3070588235294, 22.2035294117647, 24.2235294117647, 
23.6976470588235, 24.4082352941176, 21.1752941176471, 18.1023529411765, 
16.1211764705882, 18.3164705882353, 19.7635294117647, 23.1294117647059, 
22.9964705882353, 23.6552941176471, 22.6964705882353, 23.6011764705882, 
23.6517647058824, 23.7035294117647, 22.4352941176471, 18.5835294117647, 
16.5976470588235, 15.7741176470588, 19.2541176470588, 20.8776470588235, 
20.5729411764706, 21.1729411764706, 21.5870588235294, 22.4576470588235, 
23.6058823529412, 21.84, 21.6694117647059, 19.2458823529412, 
18.7517647058824, 17.7811764705882, 19.4764705882353, 21.9270588235294, 
21.5470588235294, 22.88, 23.2458823529412, 24.2776470588235, 
25.2470588235294, 23.4694117647059, 21.4435294117647, 19.3941176470588, 
18.5447058823529, 17.6, 18.3764705882353, 19.8529411764706, 22.0823529411765, 
22.7294117647059, 23.4011764705882, 23.3611764705882, 24.2505882352941, 
23.2870588235294, 21.9482352941176, 20.5552941176471, 18.0788235294118, 
18.5929411764706, 20.8752941176471, 21.9023529411765, 23.6105882352941, 
22.4070588235294, 21.5635294117647, 23.3129411764706, 22.9741176470588, 
23.3670588235294, 19.6105882352941, 16.9941176470588, 17.7670588235294, 
17.4858823529412, 17.8517647058824, 20.26, 22.1576470588235, 
23.8364705882353, 23.4447058823529, 24.8129411764706, 25.1764705882353, 
24.2694117647059, 21.5035294117647, 20.0458823529412, 18.4694117647059, 
18.4541176470588, 19.5388235294118, 22.02, 20.5364705882353, 
22.9858823529412, 21.9752941176471, 23.7729411764706, 24.0576470588235, 
24.0941176470588, 22.1552941176471, 21.2329411764706, 19.5611764705882, 
17.8788235294118, 18.6823529411765, 20.1541176470588, 21.6258823529412, 
21.5211764705882, 23.9811764705882, 24.8352941176471, 24.5882352941176, 
24.1729411764706, 21.1035294117647, 19.0435294117647, 17.08, 
17.4529411764706, 19.1458823529412, 20.4447058823529, 20.7129411764706, 
21.5047058823529, 22.6952941176471, 23.4364705882353, 23.1, 24.1847058823529, 
19.8105882352941, 19.9847058823529, 20.5188235294118, 17.7658823529412, 
19.4435294117647, 20.7588235294118, 21.7835294117647, 22.7788235294118, 
23.2388235294118, 24.9129411764706, 25.6, 23.5647058823529, 24.0058823529412, 
19.7823529411765, 19.3152941176471, 18.7741176470588, 19.0305882352941, 
20.5576470588235, 21.3611764705882, 21.4247058823529, 23.4811764705882, 
23.6505882352941, 25.1870588235294, 23.3541176470588, 21.4823529411765, 
18.7364705882353, 17.7235294117647, 18.3976470588235, 19.7235294117647, 
21.0741176470588, 21.6094117647059, 22.9635294117647, 22.4011764705882, 
23.4152941176471, 24.7741176470588, 24.3270588235294, 20.7976470588235, 
18.8764705882353, 17.7788235294118, 16.4129411764706, 21.4117647058824, 
22.3317647058824, 21.66, 22.3694117647059, 23.0917647058824, 
24.4541176470588, 23.2847058823529, 23.3164705882353, 21.2529411764706, 
19.1258823529412, 17.3882352941176, 17.3823529411765, 19.0529411764706, 
19.6576470588235, 20.2976470588235, 21.9023529411765, 23.3094117647059, 
24.0117647058824, 25.5611764705882, 24.9129411764706, 21.3964705882353, 
19.9870588235294, 18.3929411764706, 20.9917647058824, 20.3058823529412, 
21.4435294117647, 23.1941176470588, 22.8388235294118, 22.5176470588235, 
24.6317647058824, 24.6541176470588, 24.2, 20.84, 18.4576470588235, 
17.5011764705882, 19.16, 20.54, 20.1517647058824, 22.6776470588235, 
22.7470588235294, 22.7882352941176, 22.0811764705882, 24.2152941176471, 
22.9235294117647, 20.8411764705882, 19.6188235294118, 17.16, 
16.0529411764706, 20.3223529411765, 19.9752941176471, 22.5152941176471, 
22.2705882352941, 23.1541176470588, 23.1047058823529, 23.9517647058824, 
24.8176470588235, 22.18, 20.5023529411765, 17.3505882352941, 
19.1917647058824, 19.9894117647059, 19.0235294117647, 22.8235294117647, 
22.7094117647059, 23.8741176470588, 24.0517647058824, 25.1764705882353, 
23.9235294117647, 21.2929411764706, 20.6117647058824, 17.1305882352941, 
16.3470588235294, 19.6470588235294, 21.3341176470588, 20.2176470588235, 
23.7435294117647, 22.6741176470588, 22.9070588235294, 24.7152941176471, 
23.2905882352941, 20.5776470588235, 18.9635294117647, 19.0658823529412, 
18.8423529411765, 20.0729411764706, 21.3047058823529, 22.1588235294118, 
24.0388235294118, 22.1917647058824, 24.0517647058824, 24.8729411764706, 
23.0117647058824, 23, 21.3094117647059, 19.4105882352941, 20.3470588235294, 
19.4482352941176, 20.0670588235294, 21.6364705882353, 23.4211764705882, 
23.16, 25.4788235294118, 26.4741176470588, 24.0482352941176, 
21.4176470588235, 21.7164705882353, 19.0905882352941, 19.6752941176471, 
18.1611764705882, 20.0482352941176, 23.4917647058824, 23.4894117647059, 
22.5482352941176, 23.1376470588235, 24.9811764705882, 24.1552941176471, 
22.8423529411765, 19.7435294117647, 16.4, 17.3105882352941, 20.5235294117647, 
21.0494117647059, 23.1352941176471, 23.9435294117647, 23.9058823529412, 
24.9835294117647, 24.6952941176471, 24.0047058823529, 23.3164705882353, 
21.5823529411765, 18.3447058823529, 18.1964705882353, 20.0035294117647, 
20.7152941176471, 22.5705882352941, 24.6541176470588, 23.2329411764706, 
25.0517647058824, 24.3329411764706, 23.5811764705882, 22.9988235294118, 
19.4976470588235, 17.3188235294118, 19.5635294117647, 19.0211764705882, 
19.7223529411765, 22.6858823529412, 23.9423529411765, 23.6905882352941, 
25.7129411764706, 23.9505882352941, 24.4376470588235, 22.6070588235294, 
19.8882352941176, 17.2058823529412, 16.4211764705882, 20.02, 
21.9458823529412, 21.9341176470588, 22.74, 23.8, 23.9611764705882, 
24.4564705882353, 24, 23.2129411764706, 19.4729411764706, 17.7105882352941, 
16.9682352941176, 19.0341176470588, 20.2917647058824, 20.7776470588235, 
22.9364705882353, 22.7894117647059)), .Names = c("date", "temp"
), row.names = c(NA, -360L), class = "data.frame")

2 个答案:

答案 0 :(得分:2)

一种选择是data.table使用年级分组cutfindInterval。对于第一种情况,即。每个月汇总mean,我们将“日期”转换为Date类并提取months,将其用作分组变量并获取mean '临时'。请注意,我们首先将'data.frame'转换为'data.table'(setDT(df))。

library(data.table)
setDT(df)[, list(Temp=mean(temp)) , by = .(Months= months(as.Date(date), abbr=TRUE))]
#    Months     Temp
# 1:    Jan 23.90506
# 2:    Feb 24.40012
# 3:    Mar 23.73714
# 4:    Apr 21.68584
# 5:    May 19.53863
# 6:    Jun 17.90322
# 7:    Jul 17.97675
# 8:    Aug 19.56051
# 9:    Sep 20.90125
#10:    Oct 21.96886
#11:    Nov 22.86102
#12:    Dec 22.92537

对于按期和按月分组,我们需要创建一个期间列。一种方法是cutfindInterval。例如,如果我们正在寻找一个5年的窗口,即。 1960-1964,1965-1969等,我们使用vecfindInterval中创建seq来创建“期间”列,更改从findInterval派生的数字索引来自paste创建的'lbl'。使用'月'和'句号'作为分组变量,其余部分与之前相同。

setDT(df)[, c('Month', 'Period') := {tmp <- as.Date(date)
         tmp1 <- as.numeric(format(tmp, '%Y'))
         tmp2 <- months(tmp, abbr=TRUE)
         i1 <- seq(min(tmp1), max(tmp1)+4, by=5)
         i2 <- i1+4
         lbl <-paste(i1, i2, sep='-')         
         list(tmp2, lbl[findInterval(tmp1, i1)])
         }]
df[, list(Temp= mean(temp)), .(Month, Period)]
#     Month    Period     Temp
# 1:   Jan 1960-1964 23.45718
# 2:   Feb 1960-1964 23.62400
# 3:   Mar 1960-1964 23.51200
# 4:   Apr 1960-1964 21.45365
# 5:   May 1960-1964 18.35788
# 6:   Jun 1960-1964 16.80729
# 7:   Jul 1960-1964 17.25106
# 8:   Aug 1960-1964 19.42329
# 9:   Sep 1960-1964 21.80471
#10:   Oct 1960-1964 22.05247
#11:   Nov 1960-1964 22.61035
#12:   Dec 1960-1964 22.32094
#13:   Jan 1965-1969 23.64447
#14:   Feb 1965-1969 24.25082
#15:   Mar 1965-1969 23.24659
#16:   Apr 1965-1969 21.23506
#17:   May 1965-1969 19.24706
#18:   Jun 1965-1969 18.32235
#19:   Jul 1965-1969 17.98282
#20:   Aug 1965-1969 19.22376
#21:   Sep 1965-1969 21.19247
#22:   Oct 1965-1969 21.98682
#23:   Nov 1965-1969 22.96776
#24:   Dec 1965-1969 22.72612
#25:   Jan 1970-1974 24.12165
#26:   Feb 1970-1974 24.50659
#27:   Mar 1970-1974 23.87412
#28:   Apr 1970-1974 21.71153
#29:   May 1970-1974 19.75600
#30:   Jun 1970-1974 18.83976
#31:   Jul 1970-1974 18.05388
#32:   Aug 1970-1974 19.20518
#33:   Sep 1970-1974 20.59788
#34:   Oct 1970-1974 21.41859
#35:   Nov 1970-1974 22.03859
#36:   Dec 1970-1974 23.15953
#37:   Jan 1975-1979 23.71882
#38:   Feb 1975-1979 24.49788
#39:   Mar 1975-1979 23.93600
#40:   Apr 1975-1979 21.02565
#41:   May 1975-1979 19.21318
#42:   Jun 1975-1979 17.64424
#43:   Jul 1975-1979 18.00000
#44:   Aug 1975-1979 20.32659
#45:   Sep 1975-1979 20.71200
#46:   Oct 1975-1979 22.06894
#47:   Nov 1975-1979 22.42565
#48:   Dec 1975-1979 22.97224
#49:   Jan 1980-1984 23.91882
#50:   Feb 1980-1984 25.03812
#51:   Mar 1980-1984 23.81835
#52:   Apr 1980-1984 21.69365
#53:   May 1980-1984 20.62071
#54:   Jun 1980-1984 18.40965
#55:   Jul 1980-1984 18.88071
#56:   Aug 1980-1984 19.46376
#57:   Sep 1980-1984 20.35553
#58:   Oct 1980-1984 22.06565
#59:   Nov 1980-1984 23.48047
#60:   Dec 1980-1984 22.88965
#61:   Jan 1985-1989 24.56941
#62:   Feb 1985-1989 24.48329
#63:   Mar 1985-1989 24.03576
#64:   Apr 1985-1989 22.99553
#65:   May 1985-1989 20.03694
#66:   Jun 1985-1989 17.39600
#67:   Jul 1985-1989 17.69200
#68:   Aug 1985-1989 19.72047
#69:   Sep 1985-1989 20.74494
#70:   Oct 1985-1989 22.22071
#71:   Nov 1985-1989 23.64329
#72:   Dec 1985-1989 23.48376
#    Month    Period     Temp

以同样的方式,我们可以获得10年或其他窗口。

答案 1 :(得分:1)

问题的第一部分 平均所有januaries,februaries,你可以得到 -

library(data.table)#v1.9.6+
setDT(train)[,list(n_doc_line_num = uniqueN(DOC_LINE_NUM),
                   sum_comb_hours = sum(COMBINED_HOURS)), 
                                                by = DOC_NUM]

第二部分获得特定范围的平均值,您可以尝试

monthly_data <- aggregate(df$temp,by=list(strftime(df$date, "%m")),mean) 
cbind(monthly_data[2], Month = month.abb, Period = "1960-1989")

#         x   Month    Period
# 1  23.90506   Jan 1960-1989
# 2  24.40012   Feb 1960-1989
# 3  23.73714   Mar 1960-1989
# 4  21.68584   Apr 1960-1989
# 5  19.53863   May 1960-1989
# 6  17.90322   Jun 1960-1989
# 7  17.97675   Jul 1960-1989
# 8  19.56051   Aug 1960-1989
# 9  20.90125   Sep 1960-1989
# 10 21.96886   Oct 1960-1989
# 11 22.86102   Nov 1960-1989
# 12 22.92537   Dec 1960-1989

我在1960年至1964年期间证明了这一点。同样,您可以在任何给定时间段内执行此操作。